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We perform statistical inference for the solution of stochastic optimiza-
tion problems with equality and box inequality constraints. The considered
problems are prevalent in statistics and machine learning, encompassing con-
strainedM -estimation, PDE-constrained problems, physics-inspired networks,
and algorithmic fairness. We introduce a stochastic sequential quadratic pro-
gramming method (StoSQP) to solve these problems, where we determine the
search direction by performing a quadratic approximation of the objective and
a linear approximation of the constraints. Despite having access to unbiased
estimates of population gradients, a key challenge in constrained problems
lies in dealing with the bias in the search direction. To address this challenge,
we introduce a novel gradient averaging technique to debias the direction step,
leading to Debiased-StoSQP. Our method achieves global almost sure con-
vergence and exhibits local asymptotic normality with an optimal limiting co-
variance matrix in Hájek and Le Cam’s sense. Additionally, a plug-in estima-
tor of the covariance matrix is provided for practical inference purposes. To
our knowledge, Debiased-StoSQP is the first fully online method to achieve
asymptotic minimax optimality without relying on projection operators to the
constraint set, which are incomputable for nonlinear problems. Through ex-
tensive experiments on benchmark nonlinear problems in the CUTEst test set,
as well as on constrained generalized linear models and portfolio allocation
problems, with both synthetic and real data, we demonstrate the superior per-
formance of the method.

1. Introduction. We consider stochastic optimization problems with equality and box
inequality constraints, given by the form:

min
x∈Rd

f(x) = Eζ∼P [F (x; ζ)] ,

s.t. c(x) = 0, `≤ x≤ u.
(1.1)

Here, the vectors ` and u denote the lower and upper bounds, respectively, with the symbol
“≤" representing element-wise comparison; and ζ ∼ P is a random variable. The function
F (·; ζ) : Rd→ R denotes a realization of the stochastic objective f , and c : Rd→ Rm en-
codes the deterministic equality constraints. Throughout this paper, we assume that f , c,
and F (·; ζ) for each realization ζ are twice continuously differentiable. We aim to develop a
practical, fully online, and asymptotically optimal method to solve Problem (1.1).

Constraints are useful tools for integrating prior models information, ensuring models’
identifiability, and reducing dimensionality. We will provide concrete motivating examples
in Section 1.1. Given the ubiquity of Problem (1.1), it is of particular interest to estimate its
(local) solution x∗ with n samples. Arguably, the most primitive estimator is the classical
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M -estimator, where we generate samples ζ1, . . . , ζn
iid∼ P and solve the constrained problem

by replacing the population loss f with the empirical loss f̂n:

x̂n = arg min
x∈Rd

f̂n(x) :=
1

n

n∑
i=1

F (x; ζi),

s.t. c(x) = 0, `≤ x≤ u.

In fact, the above constrained M -estimator is optimal in Hájek and Le Cam’s sense [41, 72].
That is, the asymptotic consistency and normality of the minimizer x̂n is given by

(1.2)
√
n (x̂n −x∗)

d−→N
(
0,L†Cov (∇F (x∗; ζ))L†

)
,

where L = PJ∇2L(x∗,λ∗,µ∗)PJ , PJ = I − J>
(
JJ>

)†
J is the projection matrix, J is

the Jacobian matrix of active constraints at x∗, and L(x∗,λ∗,µ∗) is the Lagrangian function
at the optimal primal-dual points.

In this era of large-scale data, optimization problems such as Problem (1.1) have wide-
ranging applications, including but not limited to signal processing, neural network learn-
ing, PDE-constrained optimization, and (often randomized) numerical linear algebra. By in-
troducing auxiliary variables (also called slack variables), general equality- and inequality-
constrained problems can be transformed into the form of Problem (1.1). Given this equiv-
alency, the focus of this paper is on developing stochastic optimization algorithms to solve
Problem (1.1).

Stochastic optimization algorithms for optimizing an objective f(x) have a rich history
and can be traced back (at least) to stochastic gradient descent (SGD), which solves Problem
(1.1) in an unconstrained setting. While SGD is computationally and storage-efficient, sub-
sequent research has developed and enhanced its global convergence and local asymptotic
properties. For instance, Ruppert [62], Polyak and Juditsky[55] introduced the concept of
Polyak-Ruppert averaging, achieving asymptotic normality for averaged iterates. Chen et al.
[15] proposed the plug-in estimator and developed a more efficient batch-means estimator
to approximate the covariance matrix and estimate the corresponding confidence intervals.
Anastasiou et al. [2] developed non-asymptotic convergence rates for normal approximation
of SGD with Polyak-Ruppert averaging. Leluc and Potier [42] extend the analysis to condi-
tioned SGD, thereby encompassing a broader class of algorithms like Newton’s methods and
Quasi-Newton’s methods.

Newton’s methods are often favored over first-order methods like gradient descent, par-
ticularly for their faster convergence rates, which are made possible by incorporating (exact
or approximate) Hessian information [38, 49, 79]. Beyond theoretical advantages, Newton’s
methods, in particular randomized versions [61, 75, 76, 78], have exceptional performance
in practical applications. For example, Yao et al. [77] introduced AdaHessian, employng an
adaptive Newton’s methods to speed up deep neural network training; and Liu et al. [43] then
used ideas very similar to AdaHessian to develop Sophia, which reduced the computational
cost for training large language models. Although efforts have been made to enhance gradient
descent-based algorithms by partially extracting Hessian information [1, 12, 13], the unique
benefits of Newton’s methods continue to make them a focal point of ongoing research.

Sequential Quadratic Programming (SQP) is recognized as a potent method for tackling
constrained optimization problems, particularly when dealing with nonlinear constraints. As
Nocedal and Wright emphasized in their seminal work [38], SQP stands as one of the most
effective techniques for solving such problems in the deterministic setting. In contrast to
deterministic SQP methods, which assume full access to the objective f(x) as described
in [9, 38], our work considers a stochastic objective alongside deterministic constraints, as
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formulated in Problem (1.1). This paradigm introduces challenges, as the exact values of
the objective function, its gradients, and Hessian matrices are generally inaccessible. While
recent research has extended SQP algorithms to stochastic settings [5, 18, 19, 20, 23, 27, 47,
48, 51], these works have focused predominantly on problems with only equality constraints.
A more exhaustive literature review will be provided in Section 1.3.

Asymptotic analysis serves as a critical tool for a nuanced understanding of the local be-
havior of iterates in stochastic algorithms. In the context of constrained optimization, we
define the primal-dual solution (x∗,λ∗,µ∗1,µ

∗
2), especially the primal solution x∗, as the op-

timal solution of the Problem (1.1) with expected objective. The dual variable (λ∗,µ∗1,µ
∗
2)

corresponds to the equality constraints c(x) = 0, the lower-bound box constraints `−x≤ 0,
and the upper-bound box constraints x− u≤ 0, respectively. While global convergence re-
sults offer a broad understanding of the algorithm’s behavior, they often fall short in revealing
detailed convergence characteristics, especially in the presence of noisy observations related
to the objective f(x), gradients, and Hessians. Consider {(xk,λk,µ1,k,µ2,k)} as the se-
quence of primal-dual iterates generated by an algorithm for solving Problem (1.1). The sta-
tistical inference drawn from {(xk −λ∗,λk −λ∗,µ1,k −µ∗1,µ2,k −µ∗2)} can provide more
granular insights. Based on this, we can develop the local asymptotic distributions and esti-
mate associated statistical properties, such as covariance matrices and confidence intervals.
The stochastic nature of the iterates is reflected by the asymptotic distribution (especially the
confidence interval), provided that the number of iterations is sufficiently large. Such statisti-
cal insights offer a quantified measure of confidence and a mechanism to manage uncertainty
(and thus inference) in stochastic optimization.

Given these considerations, a natural question is:

• Can we develop an (asymptotically) optimal algorithm, in Hájek and Le Cam’s sense [41,
72], and in a manner analogous to the classical M-estimator, for the constrained stochastic
optimization Problem (1.1)?

In this paper, we answer this question in the affirmative. To accomplish this, we introduce
a novel stochastic Sequential Quadratic Programming algorithm (Debiased-StoSQP and its
refinement version Debiased-StoSQP-v2) to solve Problem (1.1), with global almost sure
convergence guarantees. We also develop asymptotic normality results and practical estima-
tors for covariance matrices of the generated iterates. The derived limiting covariance matrix
matches that of the M-estimator, as in Equation (1.2), showing that our algorithm Debiased-
StoSQP-v2 is asymptotically optimal.

Unlike previous analyses of SGD algorithms that focus on averaged iterates [15, 55], our
statistical inference targets the last iterate, rendering our approach more aligned with practical
applications. Importantly, the presence of inequality constraints in Problem (1.1) introduces
a bias in the solutions of the quadratic subproblems for direction estimates, i.e., the obtained
search direction is biased. This happens even when ∇f(x; ζ) is an unbiased estimators of
∇f(x). This makes our problem formulation more challenging, compared to problems with
only equality constraints [6, 51]. To mitigate the bias, we employ moving averaging tech-
niques for gradient estimation. Our results on the asymptotic normality of iterates establish
optimality in terms of the min-max lower bound on the covariance matrix in Hájek and Le
Cam’s sense [41, 72].

1.1. Motivating examples. We now present specific examples from machine learning and
statistics that can be cast into the forms of Problem (1.1). We re-emphasize that the general
constrained problem can be converted into the form of Problem (1.1) by introducing auxiliary
variables, where both forms share the same KKT points (where the first-order optimality
condition holds).
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1.1.1. Constrained regression. In regression models, issues like multicollinearity can
lead to unreliable inference results that conflict with both intuition and empirical evidence.
One way to mitigate such issues is by incorporating prior information into the model via con-
straints on the model parameters. For instance, we observed such complexities while working
with Poisson regression models for Chicago air pollution and death rate data; further details
are discussed in Section 5.4. Constraints can also be an inherent part of the problem for-
mulation itself. For example, in portfolio allocation problems, each entry of x denotes the
weight assigned to an asset. Thus, it is common to constrain the estimation within the set
{x ∈ Rd : 1>x= 1,x≥ 0}. In certain contexts, alternative constraints are imposed for par-
ticular purposes, including box constraints ‖x‖∞ ≤ u and affine constraints Ax= b [25, 26]
(e.g., a negative weight signifies shorting the asset). In semiparametric index models, we
impose {x ∈ Rd : ‖x‖22 = 1,x1 > 0} to make models identifiable [50, 52]. In factor analy-
sis, constraints can prevent Heywood cases (i.e., a negative estimate for the variance) [66].
In algorithmic fairness, constraints can prevent classifiers from yielding disparate outcomes
based on sensitive features like gender and ethnicity [80]. For a more comprehensive review
of constrained regression models, including different types of constraints, we refer the reader
to [22, 24, 26, 50, 52, 65, 67].

1.1.2. Physics-informed machine learning. In scientific machine learning, models must
adhere to domain knowledge, often described by partial differential equations (PDEs) con-
straints [17, 33, 40, 53]. In specialized network architectures (like neural ODEs [14], physics-
informed neural networks [39, 40, 58], and physics-informed DeepONets [73]), constraints
derived from PDEs are applied to the network, i.e., the neural network is motivated from the
following constrained optimization:

min
x
Ldata(x),

s.t. CPDE(x) = 0,

where x represents the neural network parameters; Ldata(x) and CPDE(x) = 0 are the con-
structed data fitting loss to be minimized and the governing PDEs, respectively. (It is known
that failure to enforce these constraints can lead to serious problems/instabilities in such
models [33, 40, 53].)

1.1.3. Adversarial training. Constraints are also frequently employed in adversarial
training scenarios. For example, in the training of Wasserstein generative adversarial net-
works, constraints on the norm of the network parameters are often imposed to ensure model
effectiveness [3]. Various types of constraints have been found to improve the adversarial
robustness of the model and reduce its sensitivity to perturbations in the input data [16]. In
the context of adversarial attacks, constraints are formulated to ensure that the search space
of adversarial examples remains close to the original data samples [30, 68, 81].

1.1.4. Constrained neural networks. With advances in computational power and stor-
age, as well as the increasing complexity of problems to solve, the number of parameters in
modern neural networks can range from millions to billions or more. This scale is often much
larger than the size of available training samples. In such situations, constraints play a crucial
role in mitigating overfitting by limiting the flexibility of the network space. One simple yet
effective way to improve a neural network’s generalization capability is to apply L2-norm
(regularization) constraints on the network parameters. Well-known implementation tricks
include batch normalization and layer normalization are practical tools to regularize neural
network parameters to avoid gradient vanishing or explosion and accelerate convergence.
Additionally, the importance of parameter constraints for neural networks is seen in gener-
alization analysis [54]; and it is common to work with neural networks that are (implicitly)
constrained to interpolate the data [35, 36].



AN OPTIMAL METHOD FOR CONSTRAINED STOCHASTIC OPTIMIZATION 5

1.2. Our contributions. Our main contribution is to introduce a stochastic SQP algo-
rithm with averaged gradients for solving the constrained optimization Problem (1.1). We
summarize our primary contributions, described in more detail in Sections 2-4, here.

(a) We revisit a standard SQP algorithm (namely, RelaxedSQP, Algorithm 1), which is ap-
plicable to deterministic objectives in the form of Problem (1.1), where a relaxation pa-
rameter is introduced for the feasibility of the quadratic subproblem. Significantly, we
establish a connection between this relaxation scheme and constraint qualifications, pro-
viding a deeper understanding of constrained optimization problems.

(b) Building on the RelaxedSQP, we introduce Debiased-StoSQP (Algorithm 2), a stochastic
counterpart of RelaxedSQP. To address bias issues and challenges due to inequality con-
straints, we employ averaged gradients for debiasing. We introduce separate step sizes,
denoted by αk and βk, for iterative updates and gradient averaging, respectively; and we
prove that the KKT residual of the sequence of iterates {xk}, along with least square
estimates of dual variables, converges to zero almost surely.

(c) We perform statistical inference on the iterates generated by Debiased-StoSQP-v2 algo-
rithm (Algorithm 3), which is a refinement of Algorithm 2. To do so, an averaging scheme
is introduced for the Hessian, along with an additional update for dual variables. Under
mild conditions, we show almost sure convergence of the dual variables {(λk,µ1,k,µ2,k)}
to their optimal values {(λ∗,µ∗1,µ∗2)}. We establish the asymptotic normality for the iter-
ates,

1/
√
αmin
k (xk −λ∗,λk −λ∗,µ1,k −µ∗1,µ2,k −µ∗2)

d−→N (0,ΘΩ∗) ,

where ΘΩ∗ is the Fisher information matrix of the algorithm (more specifically, the co-
variance matrix revealing the uncertainty of iterates). We achieve asymptotically optimal
normality in terms of the covariance matrix, according to the min-max lower bound by
Duchi and Ruan [23], in Hájek and Le Cam’s sense [41, 72]. We also provide a practical
estimator for the unknown covariance matrix Ω∗ and show that Ωk is convergent to Ω∗

almost surely, where Ωk is the estimation of Ω∗ (details can be found in Section 4). It is a
surprising and novel result that the algorithm with averaged gradients can indeed achieve
the asymptotic normality.

There are additional details upon which we would like to elaborate. The concept of using
a relaxation technique in the SQP subproblem was initially proposed by Powell [56]. He
provided an intuitive explanation that the constrained problem is difficult/challenging if the
relaxation technique is invalid. In Section 2, we extend this intuition by providing a more
rigorous treatment of the relaxation technique, examining it from the perspective of constraint
qualification. Unlike the approach in [20], which relies on increasing sample sizes to reduce
bias (a computationally expensive and often impractical process), we use moving averaging
techniques. These techniques allow for fully stochastic and online settings, and they achieve
convergence with just a single sample of f(x; ζ), for gradient and Hessian estimation.

A key novelty in our approach is that we introduce two different step sizes with different
decay rates for updating the iterates xk and the gradient, respectively. This can be regarded
as a “competition” between the iterates and the gradients. Specifically, for the global almost
sure convergence and local asymptotic normality to be achieved, it is essential that the gra-
dients converge faster than the iterates. This ensures that the algorithm is driven by the most
current and relevant gradients, contributing to its effective performance. Our work develops
the almost sure "lim" results that the KKT residual of generated iterates converges to zero
almost surely, with the help of the averaging gradient technique and the least squares esti-
mation on dual variables. This provides a more complete analysis than existing work [20],
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which only proved the almost sure "lim inf" convergence. We also employ statistical infer-
ence techniques to gain insights into the locally asymptotic behavior of Debiased-StoSQP-v2
algorithm. Using recent advancements in martingale difference arrays, our asymptotic anal-
ysis is developed to deal with the algorithm with averaging gradients where the gradients are
highly correlated. By setting αmin

k = 1/(k + 1), we can achieve the asymptotically optimal
normality

√
k(xk −λ∗,λk −λ∗,µ1,k −µ∗1,µ2,k −µ∗2)

d−→N (0,Ω∗) ,

in terms of the covariance matrix, as shown in [23]. Our estimator Ωk for Ω∗ is more like the
plug-in estimator in [15] and we further show that Ωk is convergent to Ω∗ almost surely.

Note that, unlike SGD, SQP is a constrained Newton’s method, where we calculate the
noisy Hessian matrix ∇2f(x; ζ) in each iteration. Therefore, the plug-in estimator for the
covariance matrix does not significantly increase the computational complexity. Previous
works studying the asymptotic behavior of algorithms typically rely on the independence of
gradients, while we consider averaged gradients that are highly correlated. The technique we
apply involves the use of two distinct step sizes with different rates of decay for iterate and
gradient updates. This enables us to balance the convergence behavior of both the iterates
and the gradients, thereby achieving asymptotic normality even under conditions of gradient
averaging. This represents a significant difference from existing methods, and it brings new
perspectives into the study of the asymptotic behavior of algorithms. More details can be
found in Section 4.

1.3. Related works. Constrained optimization problems in stochastic settings have
gained increasing attention in recent years. Berahas et al. [6] initiated the study of stochas-
tic SQP algorithms, with a focus on equality-constrained problems. They incorporated an
`1-penalized merit function and adaptive selection mechanisms for both penalty parameters
and step sizes to ensure the sufficient decrease of Newton step on the merit function, prov-
ing "lim inf" convergence for the expectation of the KKT residual. Na and Mahoney [51]
extended this line of work by developing an algorithm with inexact subproblem solutions,
and they showed the almost sure convergence of the KKT residual based on the sufficient
decrease of the exact augmented Lagrangian merit function. An alternative method is the
stochastic line search SQP proposed by Na et al. [47], where they adaptively select batch size
depending on the decrease of the exact augmented Lagrangian merit function. Their method
is more adaptive and powerful than fully stochastic algorithms, due to the growing batch size.
However, the stochastic line search method is usually more computationally expensive, and
some safeguarded techniques are required in practice, as the batch size cannot grow arbitrar-
ily. Curtis et al. [19] aimed to reduce computational overhead by allowing inexact solutions
for the quadratic subproblems, subject to specific termination tests. This approach effectively
reduces computational effort, especially in high-dimensional scenarios. Similarly, Na and
Mahoney [51] considered the sketch-and-project method in stochastic SQP, a randomized
iterative solver introduced in [32], to approximately solve the Newton system in each iter-
ation and reduce the total computation. Berahas et al. [7] also explored variance reduction
techniques in gradient approximations, adding robustness to the algorithms at the expense of
requiring exact gradient estimations in the outer loops. However, their method still requires
exact estimations of gradients, which may be intractable in some applications. Most of the
aforementioned works focus on equality-constrained problems, leaving inequality constraints
as an area open for further research.

Equality- and inequality-constrained problems pose more formidable challenges than their
equality-constrained analogs, particularly due to complications like SQP subproblem infeasi-
bility and solution bias. Recent advancements, such as the method of Na et al. [47], use exact
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augmented Lagrangian merit functions, concentrating on identifying each iteration’s active
set of constraints. However, this approach may impose stringent requirements concerning the
linear independence of Jacobians for the active constraints. Alternatively, Curtis et al. [20]
introduce an innovative two-stage algorithm. The first stage is designed to improve feasi-
bility by solving a box-constrained, strongly convex quadratic problem. The second stage
then zeroes in on optimizing the objective function using quadratic expansion. A compa-
rable two-stage algorithm has been introduced by Qiu and Kungurtsev [57]. The primary
distinction between the two methods lies in their handling of stochasticity and step-size se-
lection. Specifically, Curtis et al. mandate increasing the sample size for gradient estimations
to ensure convergence and employ adaptive step sizes. In contrast, Qiu and Kungurtsev’s ap-
proach [57] necessitates a lower bound for the batch size to control gradient uncertainty and
uses stochastic line search techniques. Duchi and Ruan [23] have formulated a Riemannian
stochastic gradient algorithm that employs dual averaging to address inequality-constrained
problems. To guarantee the feasibility of the solution iterates, their method incorporates man-
ifold projections, a technique that tends to be computationally demanding.

There exists an extensive body of work focusing on the statistical properties of SGD and
its various adaptations [15, 55]. We begin by reviewing some seminal contributions to the
area of SGD. For instance, Toulis and Airoldi [70] introduced the concept of implicit SGD,
which achieves asymptotic normality accompanied by an optimal covariance matrix. Mou et
al. [45] further contributed by investigating the asymptotic behavior of SGD when fixed step
sizes and Polyak-Ruppert averaging are employed in solving linear systems. Duchi and Ruan
[23] extended this line of research by developing projected Riemannian SGD and offering
statistical inferences for inequality-constrained convex problems. However, the local statis-
tical behavior of stochastic Newton’s methods remains relatively unexplored. More recently,
Boyer and Godichon-Baggioni [10] turned their focus to the asymptotic normality of an ad-
vanced stochastic Quasi-Newton method tailored for regression issues. Na and Mahoney [51]
provided a particularly interesting insight by showing that the iterates generated by stochastic
SQP in equality-constrained problems tend towards an asymptotic Gaussian distribution with
a nearly optimal covariance matrix. The basis for this near-optimality is the min-max lower
bounds on the covariance matrices, as proven by Duchi and Ruan [23]. Despite these strides,
a significant gap persists in literature concerning local statistical analyses for stochastic al-
gorithms applied to both equality and inequality-constrained problems. Our research bridges
this critical lacuna.

1.4. Structure of the paper. Our paper is organized as follows. In Section 2, we revisit the
concept of constraint relaxation and establish a link with constraint qualifications. Section 3
is devoted to the introduction of the proposed relaxed stochastic SQP method (Debiased-
StoSQP, Algorithm 2), where we also derive its global almost-sure convergence properties.
In Section 4, we delve into the algorithm’s (Debiased-StoSQP-v2, Algorithm 3) asymptotic
behavior, establishing both asymptotic normality and the convergence rate of the iterates
generated by our method. We also introduce a practical estimator designed for statistical in-
ference. Section 5 presents experimental results, focusing on applications to CUTEst bench-
mark problems and regression analyses. Throughout the paper, we provide sketches of proofs
following the theorems to aid in comprehension, but we defer all detailed proofs to the Ap-
pendices.

1.5. Notations. Throughout the paper, we use ‖ · ‖2 to denote the 2-norm (Euclidean
norm) for vectors and the corresponding spectral norm for matrices. The∞-norm of a vec-
tor, representing the maximal absolute value among its elements, is symbolized as ‖ · ‖∞. We
use boldface capital and lowercase letters (e.g., A and a) to denote matrices and vectors re-
spectively. Given a positive integer m, the symbol [m] represents the set {1,2, · · · ,m}. If we
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know without any ambiguity that I ⊆ [m], then we define I− := [m] \ I , which implies that
I ∪ I− = [m] and I ∩ I− = ∅. Let I ⊆ [m] be the set of indices andA be an m×m matrix.
Then the notation AI indicates the submatrix composed by columns of A with correspond-
ing columns indices in I , i.e., AI = [ai1 ,ai2 , · · · ,ai|I| ], where A = [a1,a2, · · · ,am], |I|
denotes the number of elements in the set I , and I = {i1, i2, · · · , i|I|}. For anm-dimensional
vector a and a set of indices I , we denote [a]I as the subvector of the vector a with
[a]I = (ai1 , ai2 , · · · , ai|I|)>, where a = (a1, a2, · · · , am)> and I = {i1, i2, · · · , i|I|}. Indi-
vidual elements of a vector a are expressed as either (a)i or ai, depending on the context.
Unimportant constants are subsumed within the big O notation,O(·), implying that f =O(g)
if f ≤ C · g for some constant C > 0. We use Fk to denote the σ-algebra defined by event
{ζi}ki=0. The conditional expectation E [·|Fk−1] on ζk is abbreviated as Ek [·]. We use � to
denote the element-wise multiplication between two vectors.

2. Constraints Relaxation and Deterministic SQP Algorithm. In this section, we start
by considering the deterministic constrained problem, defined as follows:

min
x∈Rd

f(x),

s.t. c(x) = 0, `≤ x≤ u,
(2.1)

where f : Rd→ R is the objective whose derivatives and Hessian are fully accessible under
the deterministic setting, and c : Rd→ Rr is the equality constraint. Throughout the paper,
we assume that the constraints c are second-order continuously differentiable. The vectors `
and u define the lower and upper bounds, respectively. Here, we require −∞< `< u<∞
and that the feasible region Ω := {x : c(x) = 0,` ≤ x ≤ u} is non-empty. At the current
iterate xk, the classical SQP algorithm obtains the search direction by solving the following
subproblem:

min
p∈Rd

∇f(xk)
>p+

1

2
p>Bkp,

s.t. c(xk) +∇c(xk)>p= 0, `≤ xk + p≤ u.
(2.2)

This is a quadratic expansion of the objective with a linearization of the constraints.
The solution pk of Problem (2.2) then serves as the direction for updating the variable x

in Problem (2.1), i.e., xk+1 = xk + αkpk, where αk > 0 is the step size. Interestingly, even
though the feasible region Ω of the original Problem (1.1) is non-empty, the Problem (2.2)
may yield an infeasible region that

Ωk := {p : c(xk) +∇c(xk)>p= 0} ∩ {p : `≤ xk + p≤ u}= ∅.

We demonstrate this through the following example.

EXAMPLE 1. Consider the following constrained optimization problem

min
(x,y)∈R2

x+ 2x2 + 3y2,

s.t. c(x) := x2 + y2 − 9 = 0, ` :=

(
0
0

)
≤
(
x
y

)
≤
(

3
2

)
:= u.

(2.3)

Here, the feasible region Ω = {(x, y) : x2 + y2 − 9 = 0,0 ≤ x ≤ 3,0 ≤ y ≤ 2} is non-
empty. If (xk, yk) = (2,1), then the region Ωk = {(∆x,∆y) : −4 + 4∆x + 2∆y = 0,0 ≤
2 + ∆x ≤ 3,0 ≤ 1 + ∆y ≤ 2} is non-empty; but the region Ωk at (xk, yk) = (1,1) (i.e.,
Ωk = {(∆x,∆y) :−7 + 2∆x+ 2∆y = 0,0≤ 1 + ∆x≤ 3,0≤ 1 + ∆y ≤ 2}) is empty.
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Fortunately, constraint relaxation provides an effective approach to circumvent this issue
of infeasibility in the SQP subproblem. Specifically, we can relax the constraints by intro-
ducing a factor θk ∈ (0,1], resulting in a relaxed feasible region, defined as

Ω̃k := {p : θkc(xk) +∇c(xk)>p= 0} ∩ {p : `≤ xk + p≤ u}.

For certain θk ∈ (0,1], this relaxed feasible region Ω̃k can be non-empty, even when Ωk is
empty. To illustrate, recall Example 1, where the SQP subproblem yielded an empty region
Ωk at (xk, yk) = (1,1). Introducing the relaxation factor θk = 1

2 makes the relaxed feasible
region Ω̃k non-empty. This constraint relaxation strategy was originally proposed by Pow-
ell [56], whose insight was that the absence of a suitable relaxation parameter signifies that
the nonlinear constraints cannot be locally improved in a first-order sense (e.g., linearization).

Naturally, this leads us to investigate the conditions under which a relaxation parame-
ter exists or fails to exist. We found that this is intimately tied to the extended generalized
Mangasarian-Fromowitz constraint qualification (EGMFCQ, as defined in Definition 2.4 of
[74]). Constraint qualifications serve as conditions that assess the compatibility between non-
linear constraints and their linear approximations. When these qualifications are not met, the
linear approximations are inadequate to capture the local geometric properties of the non-
linear constraints. We demonstrate that if xk moves away from points where EGMFCQ is
violated, then Ω̃k is feasible for some θk ∈ (0,1]. The relationship between constraint relax-
ation and constraint qualifications is elaborated further in Appendix A.

DEFINITION 1 (EGMFCQ, Definition 2.4 in [74]). The extended generalized Mangasarian-
Fromowitz constraint qualification (EGMFCQ) is said to be satisfied at a point x̄ ∈Rd, with
respect to the equality constraints c(x) = 0 and the box constraints `≤ x≤ u, if the follow-
ing conditions are met:

• there is a vector z ∈Rd such that

c(x̄) +∇c(x̄)>z = 0,

(z)i > 0, if (x̄)i = (`)i,

(z)i < 0, if (x̄)i = (u)i;

(2.4)

• columns of ∇c(x̄) are linearly independent.

Remark. It is not difficult to verify that EGMFCQ is weaker than linear independence
constraint qualification (LICQ, Definition 2 in Appendix A.1) [38, Definition 12.4]. Note that
the point x̄ does not necessarily satisfy the equality constraints c(x) = 0, but it is required to
lie within the box constraints `≤ x≤ u.

LEMMA 1. For Problem (1.1) and the current iterate xk, if EGMFCQ is satisfied at xk,
then the relaxed feasible region Ω̃k is nonempty for some θk ∈ (0,1]. Moreover, let θk be
selected within the interval (0,1] such that Ω̃k is nonempty with this θk but becomes empty
when the relaxation parameter θk is replaced by min{1.1θk,1}. This selection of θk can
always be achieved. If lim infk→∞ θk = 0, then there exists an accumulation point x∗ of the
sequence {xk} where EGMFCQ fails to hold at x∗.

Remark. Here, θk is selected such that it approximates the maximal relaxation param-
eter to make the relaxed region Ω̃k feasible. As indicated by Lemma 1, if the relaxation
parameter is not uniformly lower-bounded, a subsequence of {xk} will converge to a non-
EGMFCQ point. In light of this, we assume that the maximal relaxation parameter remains
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lower-bounded throughout the iterative process, as in Assumption 1 (below). At the begin-
ning of each iteration, we first examine the relaxation parameter to ensure that it exceeds
a predefined threshold. Failing this, we deduce that the current point is approaching a non-
EGMFCQ point, implying that the nonlinear constraints may not be effectively approximated
by linearization.

ASSUMPTION 1. For the iterates {xk} generated by the algorithm, there exists θ̃ ∈ (0,1]

such that the relaxed feasible region Ω̃k with θk ≤ θ̃ is always nonempty.

Remark. We would like to discuss more the search direction derived from Problem (2.2).
It is possible to contemplate a more cost-effective algorithm, where the search direction is first
obtained from the equality-constrained QP subproblem, followed by applying projections to
the box-constrained regions. However, the following example illustrates that this approach
can potentially lead to a stagnation at a specific point, despite being under MFCQ/LICQ
conditions.

EXAMPLE 2. Consider the following QP problem

min
p∈R3

g>p+
1

2
p>Bp,

s.t. 1 + J>p= 0,

(
0
0

)
≤ x+ p≤

(
2
2

)
,

where g = (−1,0)>, B = I2, J = (1,1)> and x = (1,0)>. If we first solve the equality-
constrained problem, the search direction is p= (0,−1)>, then the projection P (x+αp) =
x gets stuck for any α> 0.

Algorithm 1 RelaxedSQP
Input: `≤ x0 ≤ u, τ, τ̃ ∈ (0,1), σ ∈ (0,1), ρ−1 > 0, ε > 0, β ∈ (0,1).
1: for k = 0,1,2, · · · do
2: θk = 1;
3: while Ω̃k with θk is empty do
4: θk = θk · τ̃ ;
5: end while
6: Compute an positive definite Hessian matrix Bk and the gradient ∇f(xk).
7: Solve the relaxed SQP Subproblem (2.7) with θk , where the solution is denoted as pk ;
8: Let

(2.5) ρtrial
k =

 0, if −∇f(xk)>pk − p
>
k Bkpk ≥ 0,

∇f(xk)>pk+p>k Bkpk
(1−σ)θk‖c(xk)‖2 , otherwise;

and

(2.6) ρk =

{
ρk−1, if ρtrial

k ≤ ρk−1,

(1 + ε)ρtrial
k , otherwise;

9: αk = 1;
10: while φ(xk + αkpk, ρk)> φ(xk, ρk)− βαk∆q(xk,pk,∇f(xk),Bk;ρk) do
11: αk = αk · τ ;
12: end while
13: xk+1 = xk + αkpk
14: end for
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Now, we are ready to deal with the standard SQP Subproblem (2.2), which is probably
infeasible as discussed, by including a relaxation parameter θk ∈ (0,1] in each iteration. More
specifically, throughout the paper, instead of solving Problem (2.2) for the search direction in
each iteration, we alternatively focus on the following relaxed SQP subproblem:

min
p∈Rn

∇f(xk)
>p+

1

2
p>Bkp,

s.t. θkc(xk) +∇c(xk)>p= 0,

`≤ xk + p≤ u,

(2.7)

for some θk ∈ (0,1]. We assume that Assumption 1 consistently holds for iterates generated
by Algorithms 1-3.

We next offer a concise overview of the line-search technique incorporated into SQP for
constrained optimization. To do so, we adopt the `2 regularized merit function, defined as

(2.8) φ(x;ρ) := f(x) + ρ‖c(x)‖2,

to perform the backtracking line search. We define the expanded merit function at xk with
step pk as
(2.9)

q(xk,pk,∇f(xk),Bk, ρk) := f(xk)+∇f(xk)
>pk+

1

2
p>kBkpk+ρk‖c(xk)+∇c(xk)>pk‖2,

which combines the second-order approximation of the objective with the first-order lin-
earization of constraints, and the corresponding improvement

∆q(xk,pk,∇f(xk),Bk, ρk)

:=q(xk,0,∇f(xk),Bk, ρk)− q(xk,pk,∇f(xk),Bk, ρk)

=−∇f(xk)
>pk −

1

2
p>kBkpk + ρk

(
‖c(xk)‖2 −

∥∥∥c(xk) +∇c(xk)>pk
∥∥∥

2

)
=−∇f(xk)

>pk −
1

2
p>kBkpk + ρkθk‖c(xk)‖2,

(2.10)

where the last equality comes from the equality constraints of the relaxed SQP Subproblem,
Problem (2.7). To make sufficient improvement, we let ρk > 0 to be large enough such that
∆q(xk,pk,∇f(xk),Bk;ρk) ≥ 1

2p
>
kBkpk + σρkθk‖c(xk)‖2 for some σ ∈ (0,1), i.e., we

introduce the following strategy

ρtrial
k =

{
0, if −∇f(xk)

>pk − p>kBkpk ≥ 0,
∇f(xk)>pk+p>kBkpk

(1−σ)θk‖c(xk)‖2 , otherwise;

and

ρk =

{
ρk−1, if ρtrial

k ≤ ρk−1,
(1 + ε)ρtrial

k , otherwise;

for some ε > 0. Here, the strategy guarantees that the sequence {ρk} is monotonically in-
creasing and sufficient improvement is secured. We summarize this algorithm in Algorithm 1.

In addition to the feasibility assumption (Assumption 1) on the constraints, the smoothness
and boundedness assumptions on the objective and constraints, as stated in Assumption 2, are
standard for convergence analysis.
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ASSUMPTION 2. The objective function f and the constraints c are second-order con-
tinuously differentiable. Then for all ` ≤ x ≤ u, there exist M∇f ,M`,u, κ∇f , κ∇c > 0 such
that

‖u− `‖2 =M`,u, ‖∇f(x)‖2 ≤M∇f ,

and for all `≤ x,y ≤ u one has

‖∇f(x)−∇f(y)‖2 ≤ κ∇f ‖x− y‖2 ,‖∇c(x)−∇c(y)‖2 ≤ κ∇c ‖x− y‖2 .

The approximate Hessian matrix Bk is positive definite, i.e., κ1I�Bk � κ2I for some 0<
κ1 ≤ κ2. The Lagrangian multipliers {(λsub

k ,µsub
1,k,µ

sub
2,k)} for the Problem (2.7) are bounded,

i.e., there exist MLag > 0 such that

max{‖λsub
k ‖2,‖µsub

1,k‖2,‖µsub
2,k‖2} ≤MLag.

Here, the boundedness assumption for the Lagrangian multipliers guarantees that the
penalty parameter ρk is upper bounded, as illustrated by existing literature [8, 11]. Poten-
tial concerns regarding the boundedness of Lagrange multipliers are addressed by invoking
the EGMFCQ condition. This reveals that the Lagrange multipliers for the SQP subproblems
are indeed bounded under EGMFCQ condition. A detailed exposition of this can be found in
Appendix A.2, with references [11, 29].

Before delving into the properties of RelaxedSQP (Algorithm 1), it is imperative to artic-
ulate the Karush-Kuhn-Tucker (KKT) optimality conditions, as well as the associated KKT
residual specific to Problem (1.1). The KKT condition and the corresponding KKT residual
for Problem (1.1) at x is formalized as

∇f(x) +∇c(x)λ−µ1 +µ2 = 0,

c(x) = 0, `≤ x≤ u,

µ>1 (x− `) = 0,µ>2 (x−u) = 0,

µ1 ≥ 0, µ2 ≥ 0,

and R(x,λ,µ1,µ2) =


∇f(x) +∇c(x)λ−µ1 +µ2

c(x)
µ1 � (x− `)
µ2 � (x−u)

 ,

(2.11)

for some dual variables (λ,µ1,µ2) ∈Rr×Rn+×Rn+. Notably, we exclude the inequality con-
straints `≤ x≤ u in the residual definition, as they are intrinsically satisfied by the sequences
generated via the proposed RelaxedSQP algorithm. Consequently, if the sequence {xk} with
the accompanying Lagrangian multipliers {(λk,µ1,k,µ2,k)} satisfyR(xk,λk,µ1,k,µ2,k)→
0, then any accumulation point (x∗,λ∗,µ∗1,µ

∗
2) of {(xk,λk,µ1,µ2)} satisfies the KKT con-

dition in Equation (2.11), rendering x∗ as a KKT (first-order) optimal point.

THEOREM 1. Under Assumptions 1 and 2, there exist sufficiently large K̃ ∈ Z+ and
ρ̃ > 0, such that ρk = ρ̃ for all k ≥ K̃ and

(2.12) lim
k→∞

‖pk‖2 = 0 and lim
k→∞

‖c(xk)‖2 = 0.

Furthermore, if we let (λsub
k ,µsub

1,k,µ
sub
2,k) be the Lagrangian multipliers of Problem (2.7) at

xk, then

(2.13) lim
k→∞

∥∥R(xk,λ
sub
k ,µsub

1,k,µ
sub
2,k)
∥∥

2
= 0.

Sketch of the proof. We begin by establishing that the penalty parameter ρk stabilizes
after a sufficient number of iterations. Specifically, we show that there exists a sufficiently
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large integer K̃ ∈ Z+ and a constant ρ̃ > 0, such that ρk = ρ̃ for all k ≥ K̃ . Capitalizing
on the construction of the penalty parameter, we achieve a sufficient improvement in the
merit function, formalized as ∆q(xk,pk,∇f(xk),Bk;ρk)≥ 1

2p
>
kBkpk + σρkθk‖c(xk)‖2.

The lower-boundedness of the merit function, in conjunction with this sufficient improve-
ment, ensures global convergence. This rationale is analogous to the convergence analysis
in gradient descent and Newton’s methods in unconstrained problems. While unconstrained
optimization techniques ensure convergence by achieving a sufficient reduction in the objec-
tive function, constrained optimization employs a merit function that amalgamates both the
objective function and constraint violations to achieve a similar result. Complete details are
provided in Appendix A.3.

The RelaxedSQP specializes to the conventional SQP if the unit relaxation parameter (i.e.,
θk = 1) is accepted, under the condition that xk is close enough to a feasible and EGMFCQ
point. Remarkably, the RelaxedSQP algorithm achieves superlinear local convergence, akin
to the classical SQP method, under mild conditions. We do not elaborate on the local super-
linear convergence of classical SQP algorithms, which are well-studied and can be found in
[9, 38, 44, 63, 71]. Our principal focus here is on the intriguing behavior associated with the
acceptance of unit relaxation parameters, which is given in the following lemma. The detailed
proof is included in Appendix A.4.

LEMMA 2. Suppose that Assumptions 1 and 2 hold, and {xk} → x∗, where c(x∗) = 0
and EGMFCQ condition holds at x∗. Then the unit relaxation parameter θk = 1 will be
accepted when k is sufficiently large.

3. The Stochastic SQP Algorithm. In this section, we developed a stochastic optimiza-
tion algorithm with almost sure convergence guarantees (Debiased-StoSQP, Algorithm 2)
for solving Problem (1.1). To accomplish this, we first modify the deterministic SQP algo-
rithm (presented in Algorithm 1) into a fully stochastic algorithm (see Algorithm 2), where
the averaging gradient is used to reduce the biasedness introduced by the uncertainty in the
SQP subproblem. Initially, we will establish the global almost sure "lim inf" convergence for
the iterates. Subsequently, we extend these results to achieve the almost sure "lim" conver-
gence by incorporating the least squares estimates of dual variables. Before analyzing the
convergence performances of Debiased-StoSQP (Algorithm 2), we describe the algorithm
the following steps:

• Step 1: Selection of relaxation parameter. The relaxation parameter is initialized to be 1 for
k-th iterate xk, i.e., θk = 1. The feasibility of the region Ω̃k with θk is then assessed. The
relaxation parameter θk is adjusted iteratively by scaling it down by a factor τ̃ ∈ (0,1), i.e.,
θk← θk · τ̃ , until Ω̃k is confirmed to be feasible. Under Assumption 1, a suitable relaxation
parameter θk can be found after at most dlogτ̃ θ̃e steps. In practice, we include θ̃ ∈ (0,1] as
a tolerance in the algorithm for θk. There are various ways to verify the feasibility of Ω̃k

with θk. A direct and practical way is to solve the following convex quadratic problem:

min
p

∥∥∥θkc(xk) +∇c(xk)>p
∥∥∥2

2
,

s.t. `≤ xk + p≤ u,

and verify whether the minimal objective is zero. Projected gradient descent and projected
Newton’s methods are popular and efficient solvers for the box-constrained quadratic prob-
lem. If the algorithm terminates with θk < θ̃, where the small θ̃ ∈ (0,1] is the tolerance
included in Algorithm 2, then the iterate xk approaches an undesirable point, where EGM-
FCQ does not hold.
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• Step 2: Derivative and Hessian estimation. Since the exact derivative and Hessian are
inaccessible at xk, we obtain an estimated derivative gk :=∇f(xk; ζk) and approximated
Hessian Bk. Note that Bk here is an approximation to the Hessian of the Lagrangian
L(x,λ,µ1,µ2) := f(x) +λ>c(x) +µ>1 (`−x) +µ>2 (x−u) at the primal variable xk
and the estimated dual variable (λk,µ1,k,µ2,k). A practical and cheap way to calculate
Bk follows

(3.1) Bk =∇2f(xk; ζk) +

r∑
j=1

(λsub
k−1)j∇2cj(xk) + ∆k,

where λsub
k−1 is the dual variable of the SQP subproblem at (k − 1)-th iteration and ∆k

is a regularizer to make Bk positive definite. To achieve the first-order optimality con-
vergence, Bk is not necessarily an accurate approximation to ∇2L(xk,λk,µ1,k,µ2,k). In
fact, Bk is required to be positive definite to achieve a sufficient decrease direction, i.e.,
κ1I�Bk � κ2I for some 0< κ1 ≤ κ2. For example, the approximate Hessian Bk is set
to an identity matrix in [20]. To achieve the local “optimal” convergence, we expect Bk

to be an accurate approximation to the Hessian of Lagrangian, and the averaging tech-
nique is employed to reduce the noise of the stochasticity. For more details, see Lemma
4, where we show the almost sure convergence of Bk to the exact Hessian of Lagrangian
B∗ (defined later). In this part for the first-order global convergence, only the positive-
definiteness of Bk is enforced. Different from [20], where the estimated derivative gk
is directly used in the SQP subproblem, we apply the averaging technique for reducing
the noise, i.e., ḡk = ḡk−1 + βk(gk − ḡk−1). The averaging of derivatives is essential to
inequality-constrained problems, in both theoretical convergence and experimental per-
formance. It is not difficult to verify that the averaged gradients converge to the exact
gradient, at least in expectation, i.e., limk→∞E

[
‖ḡk −∇f(xk)‖22

]
= 0, under some mild

conditions. However, the simple estimated gradient is not close to the exact gradient, i.e.,
E
[
‖gk −∇f(xk)‖22

]
=O(1). Without the averaging of derivatives, [20] achieves global

convergence by reducing the noise level manually, i.e., increasing the sample size dur-
ing the iterations. However, our algorithms (Debiased-StoSQP and its variant Debiased-
StoSQP-v2) are still fully stochastic, i.e., the derivative estimate is only required to have
bounded variance, and the noise level is reduced by the imposed averaging.

• Step 3: Obtaining the direction from SQP subproblem. Equipped with the estimated
derivative ḡk, the approximate Hessian Bk and the relaxation parameter θk, we acquire
the search direction p̄k as a solution of the following SQP subproblem

min
p∈Rn

ḡ>k p+
1

2
p>Bkp,

s.t. θkc(xk) +∇c(xk)>p= 0, `≤ xk + p≤ u.
(3.2)

Here, the direction p̄k is “descent” for the merit function, owing to the convergence of ḡk
to ∇f(xk) and the positive-definiteness of Bk.

• Step 4: Adaptive step size selection. We first require that the pre-defined step size
{γk} decays (asymptotically) polynomially, i.e., γk = ι0 (k+ 1)−b1 for some ι0 > 0 and
b1 ∈ (0,1]. The strategy is similar to the adaptive strategy in the deterministic algorithm.
We alternatively select ρk such that ∆q(xk, p̄k, ḡk,Bk, ρk) enjoys the sufficient decrease,
i.e., ∆q(xk, p̄k, ḡk,Bk, ρk)≥ 1

2p
>
kBkpk+σρkθk‖c(xk)‖2 for some σ ∈ (0,1). The adap-

tivity parameter ξk ≤ ξtrial
k := ∆q(xk,p̄k,ḡk,Bk,ρk)

‖p̄k‖22
measures the quality of the direction p̄k

in reducing the merit function. If ξk is large, which implies that p̄k is probably a promis-
ing direction, then a more aggressive step size αk ∝ ξkγk is preferred, and vise versa. We
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select the step size αk ∈
[
αmin
k , αmax

k

]
:=
[

ξkγk
κ∇f+ρkκ∇c

, ξkγk
κ∇f+ρkκ∇c

+ %γ2
k

]
, where κ∇f and

κ∇c are Lipschitz constant for ∇f and ∇c, respectively. We may efficiently estimate the
Lipschitz constants by finite differences, an idea quite similar to the Armijo condition.

• Step 5: Updating the variable. The primal variable is updated as xk+1 = xk + αkp̄k. No-
tably, the algorithm does not necessitate the explicit use of dual variables for updating
the primal variable, thus omitting an update scheme for the dual variables in this section.
However, the “optimal” local convergence requires an accurate approximation of Bk to
the Hessian of the Lagrangian function. This, in turn, demands a satisfactory estimation of
dual variables. An update scheme for these dual variables, which is crucial for examining
the local convergence properties of the iterates, is provided in Equation (4.1) in Section 4.

Algorithm 2 Debiased-StoSQP
Input: `≤ x0 ≤ u, τ, τ̃ ∈ (0,1), σ ∈ (0,1), ρ−1 > 0, ερ, εξ , β ∈ (0,1), µ ∈ (0,1), % > 0, {βk}

∞
k=0, {γk}

∞
k=0.

1: for k = 0,1,2, · · · do
2: (Step 1.) θk = 1;
3: while Ω̃k with θk is empty do
4: θk = θk · τ̃ ;
5: end while
6: (Step 2.) Compute a positive definite approximate Hessian matrix Bk and the estimated gradient gk =

∇f(xk; ζk);
7: Let

ḡk = ḡk−1 + βk(gk − ḡk−1);

8: (Step 3.) Solve the relaxed SQP Subproblem (2.7) with θk , Bk and ḡk , where the solution is denoted as
p̄k ;

9: (Step 4.) Let
(3.3)

ρtrial
k =

 0, if − ḡ>k p̄k − p̄
>
k Bkp̄k ≥ 0,

ḡ>k p̄k+p̄>k Bkp̄k
(1−σ)θk‖c(xk)‖2 , otherwise;

and ρk =

{
ρk−1, if ρtrial

k ≤ ρk−1,

(1 + ερ)ρtrial
k , otherwise;

10: Let

(3.4) ξtrial
k =

∆q(xk, p̄k, ḡk,Bk, ρk)

‖p̄k‖22
, and ξk =

{
ξk−1, if ξk−1 ≤ ξ

trial
k ,

min{(1− εξ)ξk−1, ξ
trial
k }, otherwise;

11: Select αk ∈
[
αmin
k , αmax

k

]
:=
[

ξkγk
κ∇f+ρkκ∇c

, ξkγk
κ∇f+ρkκ∇c

+ %γ2
k

]
;

12: αk = min{αk,1/θk};
13: (Step 5.) xk+1 = xk + αkp̄k .
14: end for

We make the following two key assumptions regarding the gradient estimate: that it is un-
biased; and that it has bounded variance. Similar to the deterministic algorithm, we assume
that the penalty parameter becomes stable after a sufficient number of iterations, in line with
existing literature [6, 57]. See Assumption 3 (below). In addition, in Assumption 4 (below),
we impose an additional condition stipulating that this stabilized penalty parameter must
be sufficiently large, when compared to the corresponding parameter in deterministic algo-
rithms. A similar assumption also appears in [6] for the convergence of the fully stochastic
algorithms.

ASSUMPTION 3. Suppose that gk := ∇f(xk; ζk) is a unbiased estimate of ∇f(xk),
i.e., Ek[gk] = Eζ [∇f(xk; ζ)|Fk−1], and there exists a positive number σg > 0 such that
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Ek ‖gk −∇f(xk)‖22 ≤ σ2
g . We further assume that the penalty parameter becomes stable

after K̄ iterations, i.e., ρk = ρ̄, ∀k ≥ K̄ .

ASSUMPTION 4. Suppose that the stable penalty parameter ρ̄ for the stochastic algo-
rithm is sufficiently large such that ∆q(xk,pk,∇f(xk),Bk; ρ̄)≥ 1

2p
>
kBkpk+σρ̄θk‖c(xk)‖2

holds for some σ ∈ (0,1) and for all k ≥ K̄ .

Under these two additional assumptions, we have the following theorem. This theorem
is an intermediate result that the KKT residual of the iterates obtained by the proposed
Debiased-StoSQP algorithm achieves the “lim inf” convergence. The detailed proofs are
available in Appendix B.

THEOREM 2. Under Assumptions 1, 2 and 3, if αmin
k = ι1(k + 1)−b1 and βk = ι2(k +

1)−b2 for some ι1, ι2 > 0 and some b1, b2 satisfying b1 ∈ (3
4 ,1] and b2 ∈ (2− 2b1,2b1 − 1),

then

lim inf
k→∞

∆q(xk,pk,∇f(xk),Bk; ρ̄) = 0, almost surely.

If we further assume that Assumption 4 holds, then

lim inf
k→∞

[
‖pk‖22 + ‖c(xk)‖2

]
= 0, almost surely.

Furthermore, let (λsub
k ,µsub

1,k,µ
sub
2,k) be the Lagrangian multipliers of Problem (2.7) at xk with

full gradient ∇f(xk), then

(3.5) lim inf
k→∞

∥∥R(xk,λ
sub
k ,µsub

1,k,µ
sub
2,k)
∥∥

2
= 0, almost surely.

On top of this result, we also aim to enhance this "lim inf" convergence to "lim" con-
vergence by employing the least squares estimates of dual variables, rather than Lagrangian
multipliers obtained from subproblems. Given an iterate xk, the Lagrangian multipliers can
be determined from the following least-square optimization problem

min
λ,µ1,µ2

F (λ,µ1,µ2;x) =
∥∥∥∇f(x) +∇c(x)>λ−µ1 +µ2

∥∥∥2

2
+ ‖µ1 � (x− `)‖22 + ‖µ2 � (x−u)‖22 ,

s.t. µ1 ≥ 0,µ2 ≥ 0.

(3.6)

The estimated optimal Lagrangian multipliers (λ∗k,µ
∗
1,k,µ

∗
2,k) corresponding to xk serve as

one of the feasible solutions of Problem (3.6) evaluated at xk. The detailed proofs can be
found in Appendix B.

THEOREM 3. Under Assumptions 1, 2, 3 and 4, if αmin
k = ι1(k+ 1)−b1 and βk = ι2(k+

1)−b2 for some ι1, ι2 > 0 and some b1, b2 satisfying b1 ∈ (3
4 ,1] and b2 ∈ (2− 2b1,2b1 − 1),

then we have

(3.7) lim
k→∞

R(xk,λ
∗
k,µ

∗
1,k,µ

∗
2,k) = 0, almost surely.

Practical step size selection. In line 10 of Algorithm 2, the step size αk is chosen from the
interval that αk ∈

[
ξkγk

κ∇f+ρkκ∇c
, ξkγk
κ∇f+ρkκ∇c

+ %γ2
k

]
. By the definition of the adaptivity param-

eter ξk ≤ ξtrial
k = ∆q(xk,p̄k,∇f̄(xk),Bk,ρk)

‖p̄k‖22
and the step size αk ≥ ξkγk

κ∇f+ρkκ∇c
, there is a potential



AN OPTIMAL METHOD FOR CONSTRAINED STOCHASTIC OPTIMIZATION 17

risk of underestimation, i.e., ξk � ∆q(xk,p̄k,∇f̄(xk),Bk,ρk)
‖p̄k‖22

. This occurs especially due to the
non-increasing strategy outlined in Equation (3.4) for the construction of the sequence {ξk}.
To address this, we introduce additional flexibility in the upper bound of the step size selec-
tion by incorporating %γ2

k . Defining a more aggressive trial step size αtrial
k =

ξtrial
k γk

κ∇f+ρkκ∇c
, we

project the trail step size into the predefined interval
[

ξkγk
κ∇f+ρkκ∇c

, ξkγk
κ∇f+ρkκ∇c

+ %γ2
k

]
, result-

ing in

(3.8) αk =

{
αtrial
k , if αtrial

k ≤ ξkγk
κ∇f+ρkκ∇c

+ %γ2
k ,

ξkγk
κ∇f+ρkκ∇c

+ %γ2
k , otherwise.

4. Asymptotic Normality and Convergence Rate. In this section, we further refine
Debiased-StoSQP (Algorithm 2) to Debiased-StoSQP-v2 (Algorithm 3) and show the asymp-
totic normality property, where Debiased-StoSQP-v2 (Algorithm 3) is asymptotically optimal
in Hájek and Le Cam’s sense, as shown in Equation (1.2). Compared with Debiased-StoSQP
(Algorithm 2), in Debiased-StoSQP-v2 (Algorithm 3), we provide detailed update scheme
for approximate Hessian matrix Bk (as shown in Step 2′) and dual variables (as shown in
Step 6). Note that Debiased-StoSQP-v2 is a special version of Debiased-StoSQP, therefore,
they share all properties developed in Section 3.

Recall that in Algorithm 2, the approximate Hessian matrix can be any bounded and
positive definite matrices. Here, to show the optimal local convergence of {xk} to a local
minimizer x∗, the convergence of the approximate Hessian Bk to the exact Hessian matrix
∇2f(x∗) +

∑r
i=1(λ∗)i∇2c(x∗) is essential. Besides the update scheme for the primal vari-

able xk in Algorithm 2, we must include extra updates for dual variables which are only
useful for the calculating the approximate Hessian matrix Bk. More specifically, for the
current primal-dual variables (xk,λk,µ1,k,µ2,k), the approximate Hessian matrix Bk is es-
timated by

Bk =
1

k

k∑
i=1

∇2f(xi; ζi) +

r∑
j=1

(λi)j∇
2cj(xi)

+ ∆k,

where ∆k is a regularization matrix that guarantees the positive-definiteness of Bk. We also
include the averaging for the approximate Hessian to reduce the stochasticity and achieve
the almost sure convergence (see Lemma 4). We describe it as Step 2′ in Algorithm 3, since
it is a specific case of Step 2 in Algorithm 2. Let

(
p̄k,λ

sub
k ,µsub

1,k,µ
sub
2,k

)
be the primal-dual

solution of the SQP subproblem

min
p∈Rn

ḡ>k p+
1

2
p>Bkp,

s.t. θkc(xk) +∇c(xk)>p= 0, `≤ xk + p≤ u,

where ḡk is the averaged gradient, as in Algorithm 2. Then the dual variablesλk+1,µ1,k+1,µ2,k+1

are obtained by

(4.1)

 λk+1

µ1,k+1

µ2,k+1

=

 λk
µ1,k

µ2,k

+ αk

 λsub
k −λk

µsub
1,k −µ1,k

µsub
2,k −µ2,k

 ,

as in Step 6 in Algorithm 3. Note that the regularization matrix ∆k guarantees that the Algo-
rithm 3 is a specific case of Algorithm 2. Consequently, the almost sure convergence results



18 NA ET AL.

established in Section 3 for Algorithm 2 are also applicable to Algorithm 3. The following as-
sumption requires that the LICQ condition, strictly complementary slackness condition, and
strongly convexity conditions, namely second-order sufficient conditions (SOSC), are satis-
fied at the local minimizer. This kind of local condition is commonly considered crucial for
analyzing local convergence behaviors, both in unconstrained and constrained optimization
problems [38].

Algorithm 3 Debiased-StoSQP-v2
Input: `≤ x0 ≤ u, τ, τ̃ ∈ (0,1), σ ∈ (0,1), ρ−1 > 0, ερ, εξ , β ∈ (0,1), µ ∈ (0,1), % > 0, {βk}

∞
k=0, {γk}

∞
k=0.

1: for k = 0,1,2, · · · do
2: (Step 1.) θk = 1;
3: while Ω̃k with θk is empty do
4: θk = θk · τ̃ ;
5: end while
6: (Step 2′). Compute the estimated gradient gk =∇f(xk; ζk) and let

ḡk = ḡk−1 + βk(gk − ḡk−1);

7: Compute the positive definite approximate Hessian matrix Bk , i.e.,

Bk =
1

k

k∑
i=1

∇2f(xi; ζi) +

r∑
j=1

(λi)j∇
2cj(xi)

+ ∆k,

where ∆k is a regularization matrix that guarantees the positive-definiteness of Bk .
8: (Step 3.) Solve the relaxed SQP Subproblem (2.7) with θk ,Bk and ḡk , where the primal-dual solution is

denoted as
(
p̄k,λ

sub
k ,µsub

1,k,µ
sub
2,k

)
;

9: (Step 4.) Let

ρtrial
k =

 0, if − ḡ>k p̄k − p̄
>
k Bkp̄k ≥ 0,

ḡ>k p̄k+p̄>k Bkp̄k
(1−σ)θk‖c(xk)‖2 , otherwise;

and ρk =

{
ρk−1, if ρtrial

k ≤ ρk−1,

(1 + ερ)ρtrial
k , otherwise;

10: Let

ξtrial
k =

∆q(xk, p̄k, ḡk,Bk, ρk)

‖p̄k‖22
, and ξk =

{
ξk−1, if ξk−1 ≤ ξ

trial
k ,

min{(1− εξ)ξk−1, ξ
trial
k }, otherwise;

11: Select αk ∈
[
αmin
k , αmax

k

]
:=
[

ξkγk
κ∇f+ρkκ∇c

, ξkγk
κ∇f+ρkκ∇c

+ %γ2
k

]
;

12: αk = min{αk,1/θk};
13: (Step 5.) xk+1 = xk + αkp̄k .

14: (Step 6.)

 λk+1
µ1,k+1
µ2,k+1

=

 λk
µ1,k
µ2,k

+ αk

 ∆λk
∆µ1,k
∆µ2,k

, where

 ∆λk
∆µ1,k
∆µ2,k

 :=

 λsub
k −λk

µsub
1,k −µ1,k

µsub
2,k −µ2,k

 .

15: end for

ASSUMPTION 5. We assume that the generated sequence {xk} is convergent almost
surely to a strict local solution x∗, where (i) LICQ holds for active constraints at x∗; (ii)
strictly complementary slackness condition holds, i.e., (µ∗1)i > 0 if (x)i = (`)i, and (µ∗2)i > 0
if (x)i = (u)i; (iii) ∇2f(x∗) +

∑r
i=1(λ∗)i∇2ci(x

∗) is positive definite.

LEMMA 3. Under Assumptions 2 and 5, the followings hold:

1. pk→ 0 almost surely, where pk is the solution of the relaxed SQP subproblem at xk with
exact gradient ∇f(xk) and the approximate Hessian matrix Bk;
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2. ḡk −∇f(xk)→ 0, almost surely;
3. there exist sufficiently sufficiently large K∗, such that I(xk + p̄k) = I(xk +pk) = I(x∗)

and J (xk + p̄k) = J (xk + pk) = J (x∗), for k ≥K∗;
4. (xk,λk,µ1,k,µ2,k)→ (x∗,λ∗,µ∗1,µ

∗
2) almost surely.

We put the detailed proof in Appendix C.1. In Lemma 3, we show that: (1) the exact search
direction pk converges almost surely to zero, implying that the iterate xk approximately sat-
isfies KKT conditions; (2) the averaged gradients are arbitrarily close to the exact gradients
after a sufficient number of iterations, due to the updating schemes for the averaged gradients
and iterates; (3) the active and inactive sets of constraints can be correctly identified; and
(4) the primal-dual iterates converge almost surely to the optimal solution. By the correct
identification of active and inactive sets in Lemma 3, the KKT condition and the strong con-
vexity of the SQP subproblem further imply that pk and p̄k are the solution of the following
equality-constrained problems, respectively:

pk = arg min
p∈Rd

∇f(xk)
>p+

1

2
p>Bkp,

s.t. c(xk) +∇c(xk)>p= 0,

(xk + p)i = (`)i, for i ∈ I(x∗),

(xk + p)i = (u)i, for i ∈ J (x∗),

and

p̄k = arg min
p∈Rd

ḡ>k p+
1

2
p>Bkp,

s.t. c(xk) +∇c(xk)>p= 0,

(xk + p)i = (`)i, for i ∈ I(x∗),

(xk + p)i = (u)i, for i ∈ J (x∗).

(4.2)

Without the loss of generality, we assume that the relaxation parameter is unit according to
Lemma 2. The LICQ condition at x∗ also implies the LICQ at xk when xk is sufficiently
close to x∗. Then the KKT system of Problem (4.2) shows that
(4.3)

p̄k
∆λk[

∆µ1,k

]
I(x∗)[

∆µ2,k

]
J (x∗)

=


Bk ∇c(xk) [−I]I(x∗) [I]J (x∗)

∇c(xk)> 0 0 0

[−I]>I(x∗) 0 0 0

[I]>J (x∗) 0 0 0


−1

−ḡk −λk∇c(xk) +µ1,k −µ2,k
−c(xk)

[xk − `]I(x∗)
[u−xk]J (x∗)

 ,

[∆µ1,k]I−(x∗) =− [µ1,k]I−(x∗) ,

and

[∆µ2,k]J−(x∗) =− [µ2,k]J−(x∗) ,

under the almost sure convergence of primal-dual iterates and conditions in Assumption 5.
For the parameters and the step size, we only consider the case where the penalty parameter
ρk and adaptivity parameter ξk become stable, and we let αmin

k = ι1(k + 1)−b1 and αmax
k =

ι1(k+ 1)−b1 + ι0(k+ 1)−2b1 , where αk ∈ [αmin
k , αmax

k ]. We denote the Jacobian matrix of the
(estimated) KKT system at xk and x∗ as

Hk =


Bk ∇c(xk) [−I]I(x∗) [I]J (x∗)

∇c(xk)> 0 0 0

[−I]>I(x∗) 0 0 0

[I]>J (x∗) 0 0 0

 ,

and

H∗ =


∇2f(x∗) +

∑r
i=1(λ∗)i∇2ci(x

∗)∇c(x∗) [−I]I(x∗) [I]J (x∗)

∇c(x∗)> 0 0 0

[−I]>I(x∗) 0 0 0

[I]>J (x∗) 0 0 0

 ,
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respectively. Let the core covariance (also the Fisher information matrix of the algorithm) at
x∗ be defined as
(4.4)

Ω∗ =H∗−1


E
[
∇f(x∗; ζ)∇f(x∗; ζ)>

]
−∇f(x∗)∇f(x∗)> 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

H∗−1 :=H∗−1ΣH∗−1.

LEMMA 4. Under Assumptions 2 and 5, we have Bk → B∗ and Hk →H∗ almost
surely, where B∗ :=∇2f(x∗) +

∑r
i=1(λ∗)i∇2ci(x

∗).

The proof for Lemma 4 can be found in Appendix C.2. According to the almost sure
convergence in Assumption 5, and Lemmas 3 and 4, we deduce that there exists a sufficiently
large integer K∗, such that the active set of box inequalities remains constant. Specifically,
I(xk + p̄k) = I(xk + pk) = I(x∗) and J (xk + p̄k) = J (xk + pk) = J (x∗), for k ≥K∗.
Therefore, we can equivalently consider the equality-constrained SQP subproblem as given
by Problem (4.2) for k ≥K∗.

ASSUMPTION 6. Assume that the random gradient has finite third-moment, i.e., the con-
ditioned expectation

E
[
‖gk −∇f(xk)‖32 |Fk−1

]
= Eζ

[
‖∇f(xk; ζ)−∇f(xk)‖32 |Fk−1

]
≤Mm,

for some Mm > 0 and all xk in the feasible region {x : ` ≤ x ≤ u}. The Lipschitzness
of stochastic gradient holds, i.e., E

[
‖∇f(x; ζ)−∇f(y; ζ)‖22

]
≤ κ2

∇f‖x − y‖22 for some
κ∇f > 0.

THEOREM 4. Under Assumptions 2, 5 and 6, and suppose that ι1 > b2 if b1 = 1, and
b2 >

1
2b1, then

(4.5)
1√
αmin
k


xk+1 −x∗
λk+1 −λ∗

[µ1,k+1 −µ∗1]I(x∗)

[µ2,k+1 −µ∗2]J (x∗)

 d−→N (0,ΘΩ∗) ,

and

(4.6)

∥∥∥∥∥
(

[µ1,k+1 −µ∗1]I−(x∗)

[µ2,k+1 −µ∗2]J−(x∗)

)∥∥∥∥∥
2

=

{
o
(
αmin
k

)
, if b1 < 1,

O
(
αmin
k

)
, if b1 = 1.

,

where

Θ :=

{
1/2, if b1 < 1,

1/
(

2− 1
ι1

)
, if b1 = 1.

Sketch of proof: We start by decomposing the primal-dual variable

(xk+1 −x∗,λk+1 −λ∗, [µ1,k+1 −µ∗1]I(x∗) , [µ2,k+1 −µ∗2]J (x∗))

into three terms Q1,k, Q2,k and Q3,k. Using the central limit theorem for martingale differ-

ence array, we establish that 1√
αmin

k

Q1,k
d−→ N (0,ΘΩ∗). Under the given conditions, we
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can further show the remaining two terms satisfying E [Q2,k] = o
(√

αmin
k

)
and E [Q3,k] =

o
(√

αmin
k

)
. Then, the result is obtained by Slutsky’s theorem. Detailed proof can be found

in Appendix C.3.
It is a surprising and novel result that the algorithm with averaged gradients can achieve

asymptotic normality. Previous works [15, 42, 51, 70] studying the asymptotic normality of
algorithms mostly rely on the independence of gradients. However, the averaged gradients in
our algorithm are highly correlated. The key idea here is the introduction of two distinct step
sizes, with different decay rates for iterates and gradient updates. This can be regarded as a
“competition” between the iterates and the gradients. Specifically, for asymptotic normality
to be achieved, it is essential that the gradients converge faster than the iterates. This ensures
that the algorithm is driven by the most current and relevant gradients, contributing to its
effective performance. To the best of our knowledge, it is the first work establishing the
asymptotic normality for the algorithm with averaged gradients.

COROLLARY 1. Under Assumptions 2, 5 and 6, and let ι1 = 1, b1 = 1, ι2 > 0 and b2 ∈(
1
2 ,1
)
, then

(4.7)
√
k


xk+1 −x∗
λk+1 −λ∗

[µ1,k+1 −µ∗1]I(x∗)

[µ2,k+1 −µ∗2]J (x∗)

 d−→N (0,Ω∗) .

The asymptotic normality for M-estimators in Equation (1.2) establishes a lower bound
for stochastic algorithms in solving Problem (1.1), in Hájek and Le Cam’s sense [41, 72].
Our result in Corollary 1 complements this by demonstrating that the optimal local conver-
gence behavior of the primal variable is achieved, as characterized by the covariance matrix
Ω∗. Here, considering only the primal variable xk, our results in Equation (4.7) match Equa-
tion (1.2) by applying knowledge of block matrix inverse [69, Corollary 2.3].

A practical estimator of the covariance matrix. Here, we provide a practical plug-in
estimator for the unknown covariance matrix Ω∗. We then show that the estimator is con-
vergent to the exact one, and therefore, it can be adopted in analyzing the local behavior of
algorithms and conducting statistical inference. Let

(4.8) Ωk =H−1
k ΣkH

−1
k ,

where

Σk =

(
1

k+1

∑k
i=0 gig

>
i −

(
1

k+1

∑k
i=0 gi

)(
1

k+1

∑k
i=0 gi

)>
0

0 0

)
.

Observe that Ωk can be cheaply calculated in each iteration, without additional sampling/es-
timation of gradients, since it shares the gradient estimate gi with averaged gradients ḡk. The
estimator Ωk for the covariance matrix Ω∗ can be used as a surrogate to the exact matrix for
analyzing the local behavior of algorithms and conducting statistical inference. The follow-
ing theorem establishes the almost sure convergence of the practical plug-in estimator to the
exact covariance matrix. The proof can be found in Appendix C.4.

THEOREM 5. Under Assumptions 2, 5 and 6, and suppose that ι1 > b2 if b1 = 1, and
b2 >

1
2b1, then Σk→Σ∗ and Ωk→Ω∗, almost surely.
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5. Experiments. In this section, we describe comprehensive experiments we have con-
ducted to demonstrate the effectiveness of the Debiased-StoSQP-v2 (Algorithm 3). Specif-
ically, we applied it to a variety of problems, including benchmark optimization problems
from CUTEst library [28, 31] as well as constrained regression problems. For regression
problems, we consider the linear, logistic, and Poisson models. Under the classical regres-
sion setup, we define ζk = (ζbk , ζak

), where ζbk represents the k-th response and ζak
the cor-

responding observation (attributes). In linear regression, the response is generated according
to:

ζbk = ζ>ak
x∗ + εk,

where x∗ is the true parameter and {εk}k are i.i.d. noise terms. For logistic regression models,
we consider binary responses ζbk ∈ {−1,1} generated via:

P (ζbk |ζak
) =

1

1 + exp
(
−ζbk · ζ>ak

x∗
) .

In the case of Poisson regression, the response follows a conditional Poisson distribution
depending on the observation, i.e.,

ζbk ∼ Pois (λ(ζak
)) , where log(λ(ζak

)) = ζ>ak
x∗.

For each of these models, we can define an objective function corresponding to the model
parameter x:

linear models: f(x; ζk) =
1

2

(
ζbk − ζ>ak

x
)
,

logistic models: f(x; ζk) = log
(

1 + exp
(
−ζbk · ζ>ak

x
))

,

Poisson models: f(x; ζk) = ζbk · ζ>ak
x− exp

(
ζ>ak
x
)
.

It is straightforward to verify that x∗ is the optimal solution of the stochastic objective
f(x) = E [f(x; ζk)]. Constraints on the model parameters x may be incorporated based
on prior knowledge or specific problem requirements. We also explore portfolio optimiza-
tion problems featuring exponential and logarithmic utility functions as the objective. In
terms of the hyperparameters, we fix them for all experiments. The step sizes are set
as γk = 1/(k + 1)0.751 and βk = 1/(k + 1)0.5, which satisfy conditions in Theorems 3
and 4. Quadratic subproblems are solved by the ProxQP solver [4].1 Implementation de-
tails are available as our supplementary code, which can be accessed at https://github.com/
yihang-gao/Debiased-StoSQP/tree/main/code.

5.1. CUTEst benchmark problems. The CUTEst library collects various types of con-
strained and unconstrained optimization problems for evaluating the performances of opti-
mization algorithms. We select a subset of the constrained optimization problems (e.g., HS
problems) from the library, and we artificially add noise to gradient and Hessian as follows:

• Gaussian noise: Let gk = ∇f(xk, ζk) be perturbed such that gk = ∇f(xk, ζk) ∼
N (∇f(xk), ε(I+ee>)). Similarly, the Hessian is given by∇2f(xk, ζk)∼∇2f(xk)+E,
where Ei,j ∼N (0, ε). The noise level ε is chosen from {1,10−1,10−2,10−4}.

1In our implementation, we import the ‘qpsolvers’ package from https://qpsolvers.github.io/qpsolvers/.

https://github.com/yihang-gao/Debiased-StoSQP/tree/main/code
https://github.com/yihang-gao/Debiased-StoSQP/tree/main/code
https://qpsolvers.github.io/qpsolvers/
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• Student’s t-distribution noise: Let gk =∇f(xk, ζk) be perturbed by noise following a Stu-
dent’s t-distribution, i.e., gk = ∇f(xk, ζ) ∼ ∇f(xk) + s, where each entry si ∼ t(m).
Similarly, the Hessian is perturbed as ∇2f(xk, ζ) ∼ ∇2f(xk) +E, where each element
Ei,j ∼ t(m). Here, t(m) denotes the t-distributional noise, m denotes the degrees of free-
dom, and m is selected from the set {3,4,5}.

We first conduct a comparison between the proposed Debiased-StoSQP-v2 (Algorithm 3),
ActiveSet-SQP [48] and StoSQP [20], where we evaluate each method by the KKT residual
in Equation (2.11) and feasibility error. For each algorithm and problem, we run 105 iter-
ations. Our empirical results indicate that the Debiased-StoSQP-v2 algorithm consistently
outperforms the StoSQP (without debiasing techniques), both of which adopt fully stochastic
gradients and Hessian. This superior performance can be attributed to our algorithm’s use of
gradient averaging. After a sufficient number of iterations, the averaged gradient approaches
the exact gradient, thereby approximating the behavior of deterministic algorithms.

In particular, as shown in Figure 1, we plot the difference between the averaged gradients
and the exact gradients during iterations, and the results validate our expectations and intu-
itions. The averaged gradients (the solid lines) move closer to the exact gradients, compared
with estimated gradients without averaging (the dashed lines). In contrast, StoSQP (without
debiasing techniques) lacks this beneficial property, and it suffers from oscillations brought
by the stochastic gradients. The ActiveSet-SQP, which uses a stochastic line search method,
necessitates an increasing sample size, and it employs a safeguard technique to ensure the
accuracy of the line search. Consequently, it requires a sufficiently large sample size to make
the line search practically effective. In contrast, Debiased-StoSQP-v2 requires only a single
sample to estimate both the gradient and the Hessian in each iteration. Therefore, it is unsur-
prising that ActiveSet-SQP performs better with higher noise levels. However, when the noise
level is relatively low, Debiased-StoSQP-v2 can effectively mitigate the noise through aver-
aging gradient, and it can achieve similar and even better performances than ActiveSet-SQP.
The visualized results are shown in Figure 2.

We next test the local asymptotic normality behavior of the generated iterates. For each
problem, we aim to estimate 1

d1
>x∗ and set the nominal coverage probability to 95%. Here,

the confidence interval is constructed by[
1

d
1>xk −

1.96

d

√
αmin
k

√
Θe>[1:d]Ωte[1:d],

1

d
1>xk +

1.96

d

√
αmin
k

√
Θe>[1:d]Ωte[1:d]

]
,

using the estimators and limiting normality results in Theorem 5. The performance of the
method in terms of asymptotic normality is measured by the coverage rate (CovRate) of the
confidence intervals and their average length (AvgLen) over 200 runs. The aggregated results
are summarized in Table 1. We observe that the constructed (95%) confidence intervals by
Debiased-StoSQP-v2 cover the true solution in probability closely aligned to 95%, thereby
empirically validating our theoretical derivations on asymptotic normality. From the table, we
note that the length of the confidence intervals tends to expand as the noise level increases, a
behavior which is in line with our expectations, as the covariance matrix Ω∗ is dependent on
the Cov (∇f(x∗; ζ)).

5.2. Constrained regression problems. Here, we implement Debiased-StoSQP-v2 algo-
rithm (Algorithm 3) on constrained regression problems, including both the linear and the
logistic regression. The response ζbk is generated based on observations ζak

∼N (µa,Σa),
where the mean vector is set as µa = (1, · · · ,1,−1, · · · ,−1). We explore three differ-
ent choices of the covariance matrix, as in [15]: (i) Identity matrix, i.e., Σ1 = Id; (ii)
Toeplitz matrix, i.e., (Σa)i,j = r|i−j| for some r > 0; and (iii) Equicorrelation matrix, i.e.,
(Σa)i,j = r for all i 6= j and (Σa)i,i = 1, for some r > 0. The true parameter vector of
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Fig 1: Difference between the averaged gradients and the exact gradients on HS32 and FCCU prob-
lems. Solid lines: trajectories of gradient difference between the averaged gradients and the exact
gradients during iterations, i.e., ‖ḡk −∇f(xk)‖2. Dashed lines: expected error without averaging,
i.e., Ek [‖gk −∇f(xk)‖2].
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Fig 2: KKT residuals and feasibility errors of Debiased-StoSQP-v2, StoSQP, and ActiveSet-SQP on
CUTEst problems.

both two regression models is configured as x∗ =
(

3
2d , · · · ,

3
2d ,

1
2d , · · · ,

1
2d

)>. We consider
the non-negativity constraints, denoted by Ω :=

{
x : 1>x= 1,x≥ 0

}
. In the linear regres-

sion problem, the noise εk is sampled from εk ∼N (0,1). We aim to estimate ê>x∗, where
ê= (1, · · · ,1,−1, · · · ,−1)>, by constructing 95% confidence intervals.

We report the results in Tables 2 and 3, highlighting different settings for the Toeplitz
matrix and Equicorrelation matrix with r = 0.4,0.5,0.6 and r = 0.1,0.2,0.3, respectively.
In each experiment, we run 200 times with varying random seeds to calculate the coverage
rate (CovRate) and the average length (AvgLen) of the confidence interval. Our results affirm
that the constructed 95% confidence intervals closely achieve a 95% coverage rate, thus em-
pirically validating our theoretical conclusions on asymptotic normality. Moreover, we also
observe that the average length of confidence intervals are in order of 10−2, matching the ex-
perimental results reported by Chen et al. [15] and Na et al. [51]. The low standard deviation
of these intervals’ length relative to their average length suggests robustness across different
random seeds.

5.3. Portfolio optimization problems. Here, we investigate portfolio optimization prob-
lems using 30 portfolios selected from the Fama-French 100 Portfolios DataSet, subject to the
well-known gross-exposure constraint [26]: Ωc :=

{
x : 1>x= 1,‖x‖1 ≤ c

}
, where we set

c= 3, and where x denotes the weights for corresponding stocks. We consider four prevalent
portfolio optimization models:
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TABLE 1
The coverage rate (CovRate) and length of confidence intervals (AvgLen) for some CUTEst (constrained)

problems. The standard deviation of the interval length is also reported.

Problem Noise Level Gaussian Freedom Student t
CovRate(%) AvgLen CovRate(%) AvgLen

HS41

1E+0 97.0 2.50E-2 (7.73E-4) 3 86.0 3.77E-2 (1.90E-3)
1E-1 97.5 7.59E-3 (7.03E-5) 4 93.0 3.06E-2 (1.28E-3)
1E-2 97.0 2.40E-3 (8.69E-6) 5 94.0 2.79E-2 (9.25E-4)
1E-4 97.5 2.40E-4 (5.95E-7) 9 97.0 2.45E-2 (7.10E-4)

HS65
1E+0 94.5 1.87E-3 (6.82E-6) 3 96.5 3.18E-3 (1.66E-4)
1E-1 94.5 5.92E-4 (1.59E-6) 4 95.0 2.59E-3 (1.72E-5)
1E-2 95.0 1.87E-4 (4.96E-7) 5 95.0 2.37E-3 (1.11E-5)
1E-4 94.5 1.87E-5 (4.97E-8) 9 94.5 2.08E-3 (8.36E-6)

HS68
1E+0 97.0 2.31E-1 (4.85E-2) 3 95.5 3.00E-1 (1.32E-1)
1E-1 98.0 5.09E-2 (2.33E-3) 4 94.5 2.08E-1 (6.09E-2)
1E-2 98.5 1.58E-2 (2.23E-4) 5 95.0 1.81E-1 (5.07E-2)
1E-4 95.5 1.58E-3 (4.56E-6) 9 94.5 1.48E-1 (3.52E-2)

HS71
1E+0 97.0 1.95E-3 (1.44E-5) 3 94.0 3.34E-3 (1.23E-4)
1E-1 96.5 6.17E-4 (1.93E-6) 4 96.0 2.74E-3 (6.79E-3)
1E-2 96.5 1.95E-4 (5.20E-7) 5 96.5 2.49E-3 (2.51E-5)
1E-4 98.5 1.95E-5 (5.08E-8) 9 95.0 2.19E-3 (2.12E-5)

HS81
1E+0 94.5 3.49E-2 (3.17E-3) 3 91.0 5.04E-2 (7.56E-3)
1E-1 97.0 1.13E-2 (4.77E-5) 4 94.0 4.21E-2 (3.51E-3)
1E-2 98.0 3.58E-3 (9.63E-6) 5 94.5 3.88E-2 (2.42E-3)
1E-4 98.0 3.59E-4 (9.22E-7) 9 95.0 3.43E-2 (2.10E-3)

TABLE 2
The coverage rate (CovRate) and length of confidence intervals (AvgLen) for constrained linear regression

problems. The standard deviation of the interval length is also reported.

Cov Matrix Dimension CovRate(%) AvgLen Dimension CovRate(%) AvgLen

Identity 5 93.5 3.73E-2 (1.74E-4) 20 92.5 4.00E-2 (1.33E-4)
10 96.5 3.91E-2 (1.47E-4) 30 92.5 4.03E-2 (1.53E-4)

Toeplitz (0.4) 5 94.0 3.71E-2 (1.68E-4) 20 96.0 3.93E-2 (1.38E-4)
10 94.5 3.82E-2 (1.62E-4) 30 93.0 3.98E-2 (1.52E-4)

Toeplitz (0.5) 5 94.0 3.74E-2 (1.67E-4) 20 96.0 3.91E-2 (1.38E-4)
10 95.5 3.82E-2 (1.60E-4) 30 93.0 3.95E-2 (1.61E-4)

Toeplitz (0.6) 5 94.5 3.78E-2 (1.70E-4) 20 96.5 3.90E-2 (1.36E-4)
10 94.5 3.83E-2 (1.68E-4) 30 93.5 3.94E-2 (1.60E-4)

EquiCorr (0.1) 5 93.5 3.76E-2 (1.58E-4) 20 94.0 4.01E-2 (1.35E-4)
10 93.0 3.92E-2 (1.40E-4) 30 92.5 4.05E-2 (1.56E-4)

EquiCorr (0.2) 5 92.5 3.79E-2 (1.59E-4) 20 93.5 4.02E-2 (1.26E-4)
10 95.0 3.94E-2 (1.50E-4) 30 96.0 4.05E-2 (1.44E-4)

EquiCorr (0.3) 5 92.5 3.83E-2 (1.65E-4) 20 93.0 4.03E-2 (1.31E-4)
10 95.0 3.96E-2 (1.46E-4) 30 93.5 4.05E-2 (1.49E-4)

• Global minimum variance (GMV)

min
x∈Ωc

x>Σx,

where Σ is the covariance matrix of target stocks.
• Mean-variance (MV)

min
x∈Ωc

−x>µ+x>Σx,

where µ and Σ are the mean and the covariance matrix of target stocks.
• Exponential utility (EXP)

min
x∈Ωc

E
[
exp

(
−η
(
x>ζa

))]
,
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TABLE 3
The coverage rate (CovRate) and length of confidence intervals (AvgLen) for constrained logistic regression

problems. The standard deviation of the interval length is also reported.

Cov Matrix Dimension CovRate(%) AvgLen Dimension CovRate(%) AvgLen

Identity 5 96.5 4.46E-2 (7.97E-5) 20 94.5 5.87E-2 (7.13E-5)
10 94.5 5.87E-2 (7.13E-5) 30 93.0 7.34E-2 (7.90E-5)

Toeplitz (0.4) 5 94.5 4.46E-2 (9.06E-5) 20 92.5 6.86E-2 (1.01E-4)
10 95.5 5.83E-2 (8.59E-5) 30 93.5 7.30E-2 (1.13E-4)

Toeplitz (0.5) 5 95.0 4.46E-2 (8.91E-5) 20 94.0 6.84E-2 (1.08E-4)
10 94.5 5.83E-2 (8.77E-5) 30 93.0 7.28E-2 (1.24E-4)

Toeplitz (0.6) 5 94.5 4.47E-2 (9.63E-5) 20 92.5 6.82E-2 (1.19E-4)
10 94.0 5.83E-2 (8.77E-5) 30 94.5 7.26E-2 (1.32E-4)

EquiCorr (0.1) 5 95.0 4.47E-2 (9.22E-5) 20 93.0 6.69E-2 (9.40E-5)
10 94.0 5.89E-2 (7.81E-5) 30 93.5 7.40E-2 (9.27E-5)

EquiCorr (0.2) 5 96.0 4.47E-2 (8.86E-4) 20 95.0 7.00E-2 (1.05E-4)
10 95.0 5.92E-2 (7.32E-5) 30 92.5 7.46E-2 (1.02E-4)

EquiCorr (0.3) 5 95.0 4.48E-2 (8.59E-5) 20 93.5 7.05E-2 (1.09E-4)
10 96.0 5.95E-2 (7.94E-4) 30 94.5 7.52E-2 (1.09E-4)

where ζa is the observed price changes and η > 0 is a scaling parameter set to be η = 0.1.
• Logarithmic utility (LOG)

min
x∈Ωc

−E
[
log
(
x>ζa + η

)]
,

where ζa is the observed price changes and η > 0 serves as the regularization parameter to
ensure the feasibility of the logarithm, where we set η = 15.

TABLE 4
Fama-French 100 Portfolios DataSet, 2021-2023

Model Return (%) Max Drawdown Sharp Ratio Sortino Ratio
EW 15.10 0.22 0.73 1.15

GMV (ours) 34.94 0.27 2.81 4.28
GMV (det) 33.43 0.27 2.71 4.14
MV (ours) 42.21 0.28 3.36 5.09
MV (det) 40.31 0.28 3.29 5.02

EXP (ours) 52.50 0.32 2.60 3.98
EXP (det) 51.85 0.31 2.55 3.86

LOG (ours) 54.86 0.33 2.45 3.59
LOG (det) 55.08 0.32 2.46 3.57

The exact mean, covariance, and expectations are inaccessible in practice. Instead, we
estimate the stochastic gradient and Hessian of the expected objective using available obser-
vations, and we apply Debiased-StoSQP-v2 to solve the problems. For the portfolio strategy
x, we use historical data from the past year as training samples. We assess the performance of
our portfolio strategies using four key metrics, calculated over the data from years 2021-2023:
the accumulative return, maximum drawdown, sharp ratio, and Sortino ratio. The accumu-
lative return captures the overall gain or loss of the portfolio strategy. The other three are
related to the risk of the strategy: the maximum drawdown measures the maximum observed
loss from a peak to a trough; the sharp ratio compares the portfolio’s return to its risk, taking
into account the standard deviation of the portfolio returns; and the Sortino ratio is a variation
of the sharp ratio, considering the standard deviation of negative portfolio returns. The results
are summarized in Table 4.
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Interestingly, we observe that the model of logarithmic utility achieves the best accumula-
tive return, consistent with the results reported by [22]. In terms of risk control, however, the
mean-variance model is more favorable. We also perform a comparison between Debiased-
StoSQP-v2 and the deterministic approach denoted as “det”. We found that the performance
metrics across the two methods are quite similar, suggesting that Debiased-StoSQP-v2 ap-
proaches deterministic algorithms because of the use of the averaging gradient and Hessian.

In Figure 3, we visualize the weights of two stocks as an example, evaluated by the expo-
nential and the logarithmic utility models. The blue line traces the trajectory of the weight
corresponding to the stock over time. This is accompanied by a blue band, which represents
the estimated standard deviation of the weight, as evaluated by the developed asymptotic
normality. The yellow line is the accumulative return of the stock. We observe a significant
correlation between the weight adjustments and the stock’s return trajectory. Notably, abrupt
changes in the stock’s return are promptly followed by widened blue bands, indicating a
surge in the estimated variance of the weight. This behavior matches well with intuition and
underscores the hypothesis that the variance of the weight may serve as an indicator of the
stock’s inherent risk.
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Fig 3: Weights and returns. Blue lines: the predicted weight for a specific stock in different months.
Blue bands: the estimated standard deviation of the weight, evaluated by the derived asymptotic nor-
mality results. Yellow lines: the accumulative return of the stock. The predicted stock weights are highly
correlated with the stock’s price. Abrupt stock price (return) changes shown by the yellow lines are
followed by widened blue bands.

5.4. Poisson regression: Chicago air pollution and death rate data. Here, we study the
relationship between different attributes related to air pollution (e.g., PM10, PM25, O3, SO2)
and time, with the death rate, by using Poisson regression. Let ζa ∈ Rd represent the vector
of air pollution and time attributes, and let ζb ∈N denote the death rate. We model the condi-
tional distribution of death ζb given ζa as a Poisson distribution: ζb|ζa ∼ Pois(λ(ζa)), where
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logλ(ζa) = ζ>a x
∗ and x∗ is the true, but unknown, parameter vector for the Poisson linear

model. The unconstrained Poisson regression problem is formulated as

(5.1) min
x

E [f(x; ζ)] := E(ζb,ζa)

[
ζb · ζ>a x− exp

(
ζ>a x

)]
.

However, based on prior knowledge that air pollution attributes are likely to contribute to an
increase in the death rate, we impose non-negativity constraints on the corresponding weights
x. The constrained Poisson regression model is

min
x

E [f(x; ζ)] := E(ζb,ζa)

[
ζb · ζ>a x− exp

(
ζ>a x

)]
,

s.t. xB ≥ 0,
(5.2)

where B is the set of indices of weights corresponding to pollution attributes.

TABLE 5
Summary of Poisson regression (Model 1) on Chicago air pollution and death rate data

Variables Model Coefficient (10−2) 95 % CI (10−2) p-Value

PM10 Model 1 0.42 [-0.57, 1.42] 0.396
Ours 0.13 [-0.56,0.79] 0.371

PM25 Model 1 0.72 [-0.08, 1.52] 0.103
Ours 0.65 [0.02, 1.28] 0.023

O3 Model 1 -2.97 [-3.70, -2.24] 0.000
Ours 0.00 active

SO2 Model 1 1.38 [0.58, 2.20] 0.001
Ours 2.08 [1.43, 2.73] 0.000

Time Model 1 0.95 [0.17, 1.74] 0.008
Ours 1.13 [0.64, 1.63] 0.000

Interc Model 1 4.6968 [4.690, 4.704] 0.000
Ours 4.6974 [4.692, 4.703] 0.000

TABLE 6
Summary of Poisson regression (Model 2) on Chicago air pollution and death rate data

Variables Model Coefficient (10−2) 95 % CI (10−2) p-Value

PM10 Model 2 -0.86 [-1.82, 0.10] 0.062
Ours 0.11 [-0.52, 0.74] 0.362

PM25 Model 2 1.37 [0.51, 2.23] 0.001
Ours 0.65 [0.01, 1.28] 0.022

SO2 Model 2 2.06 [1.28, 2.84] 0.000
Ours 2.08 [1.42, 2.73] 0.000

Time Model 2 1.21 [0.53, 1.89] 0.001
Ours 1.13 [0.64, 1.63] 0.000

Interc Model 1 4.6972 [4.690, 4.704] 0.000
Ours 4.6973 [4.692, 4.703] 0.000

We first consider the unconstrained Poisson regression model in Equation (5.1), including
all five attributes, denoted as Model 1. The estimated model coefficients and their confidence
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intervals and p-values are provided by the ‘statsmodels’ package in Python [64]. Surprisingly,
we observe that the coefficient for O3 is significantly negative, which contradicts our prior
understanding of the likely impact of air pollution on death rates. To address this issue, we
turn to the constrained Poisson model in Equation (5.2), solved by Debiased-StoSQP-v2 (Al-
gorithm 3). We also estimate confidence intervals and p-values using the derived asymptotic
normality. We list the results in Table 5. Remarkably, under the non-negativity constraints,
the weight of O3 is recognized to be active with the constraints, i.e., it is equal to zero. The
estimated model coefficients from the constrained Poisson model are more consistent with
our prior beliefs.

Next, we consider a reduced model that excludes the O3 attribute, denoted as Model 2.
We find that in this model, the weight for PM10 becomes negative, once again contradict-
ing our prior beliefs. Similarly, employing the constrained Poisson model and solving it
via Debiased-StoSQP-v2 (Algorithm 3), the weight for PM10 becomes positive, although
the significance level revealed by the p-value is not particularly strong. The results are re-
ported in Table 6. These findings highlight the importance of incorporating domain-specific
constraints in statistical models. They also emphasize the effectiveness of our approach in
addressing such constrained optimization problems.

6. Conclusion. In this work, we proposed Debiased-StoSQP and its refinement Debiased-
StoSQP-v2, fully stochastic Newton’s methods for solving constrained optimization prob-
lems. We include the averaging technique for both the gradient and Hessian, reducing the
impact of stochastic noise and improving the algorithm’s performance, compared to exist-
ing fully stochastic algorithms. We then established the almost sure global convergence in
terms of the first-order optimality (KKT) conditions. Furthermore, under certain mild condi-
tions, we developed the asymptotic normality for Debiased-StoSQP-v2 (Algorithm 3). This
is a particularly surprising and novel result since the gradients in Debiased-StoSQP-v2 are
highly correlated, in contrast with previous work that primarily relies on the independence
of gradients. We also provided a practical plug-in estimator for the covariance matrix. With
our results, we are capable of applying Debiased-StoSQP-v2 to perform online inference for
constrained optimization problems, as we have demonstrated with our empirical results.

While our algorithm Debiased-StoSQP-v2 has demonstrated promising results, there is
still potential for further investigation and improvement. Specifically, the current implemen-
tation and analysis require the exact solution of quadratic subproblems, which could be
computationally expensive. A possible extension of this work would be to explore the use
of inexact solutions for the quadratic subproblems, possibly implemented within the Rand-
BLAS/RandLAPACK library [46]. A recent work by Na and Mahoney [51] employed sketch-
ing techniques to inexactly solve linear systems for equality-constrained subproblems. The
asymptotic normality behavior still holds for the StoSQP algorithm with sketching. It re-
mains an open question whether the global almost sure convergence and the local asymptotic
normality properties of Debiased-StoSQP-v2 are preserved when fast and inexact solvers are
adopted. Investigating these areas would help in developing a more efficient and versatile
algorithm, with broader applicability in constrained optimization scenarios.
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APPENDIX A: CONSTRAINTS RELAXATION AND DETERMINISTIC ALGORITHM

A.1. Proof for Proposition 1. We first prove the first part of the proposition that the
relaxation parameter is non-zero if EGMFCQ holds at the iterate. Define Ik := I(xk) :=
{i ∈ [d] : (xk)i = (`)i} and Jk := J (xk) := {i ∈ [d] : (xk)i = (u)i}, then Ik ∩ Jk = ∅ and
we denote Ak := A(xk) := I(xk) ∪ J (xk) as the active set of xk. Suppose that zk is the
vector satisfying Equation (2.4) at xk and we simply let

ε := min
{
|(xk − `)i| , |(u−xk)i| , |(u− `)j | : i ∈A−k , j ∈Ak

}
> 0,

and

z̄k =
ε

‖zk‖2
zk.

Then, it is not difficult to verify that

`≤ xk + z̄k ≤ u,

and

(A.1)
ε

‖zk‖2
c(xk) +∇c(xk)z̄k = 0,

which imply that z̄k ∈ Ω̃k with θk = ε
‖zk‖2 . The following lemma shows that if Ω̃k with

θ̄ ∈ (0,1] is feasible and 0 < ¯̄θ ≤ θ̄, then Ω̃k with ¯̄θ is also feasible. It further indicates that
Assumption 1 on the lower-boundedness of the relaxation parameter makes sense.

LEMMA 5. If {p : θ̄ck + J>k p = 0} ∩ {p : ` ≤ xk + p ≤ u} 6= ∅ and 0 < ¯̄θ ≤ θ̄, then
{p : ¯̄θck + J>k p= 0} ∩ {p : `≤ xk + p≤ u} 6= ∅. Therefore, Assumption 1 makes sense.

PROOF. Suppose that p̄ ∈ {p : θ̄ck + J>k p = 0} ∩ {p : ` ≤ xk + p ≤ u}, then θ̄ck +

J>k p̄ = 0 and thus, ¯̄θck + J>k

(
¯̄θ/θ̄ · p̄

)
= 0. Let ¯̄p = ¯̄θ/θ̄ · p̄, then ¯̄θck + J>k ¯̄p = 0 and

`≤ xk + ¯̄p≤ u, which complete the proof.

LEMMA 6 (Theorem 3 in [60]). If x̄ satisfies EGMFCQ, then there exists a neighborhood
B(x̄; r̄) := {x : ‖x− x̄‖2 ≤ r̄} with some sufficiently small radius r̄ > 0, such that all points
in the neighborhood satisfy EGMFCQ.

LEMMA 7. Suppose that EGMFCQ holds at x̄, then EGMFCQ also holds at x̄k when
x̄k is sufficiently close to x̄, for any sequence x̄k → x̄, by Lemma 6. Let z̄ be the vectors
satisfying Condition (2.4) at x̄. Then we can always find a sequence of vectors {z̄k} with z̄k
satisfying Condition (2.4) at x̄k such that ‖z̄k − z̄‖2→ 0 as ‖x̄k − x̄‖2→ 0.

PROOF. Since the vector z̄ satisfies Condition (2.4) at x̄, i.e., c(x̄) + ∇c(x̄)>z̄ = 0,
by the smoothness of c(x) and the linear independence of columns of ∇c(x̄), we can
find z̄k such that c(x̄k) + ∇c(x̄k)>z̄k = 0 and ‖z̄k − z̄‖2 → 0 as ‖x̄k − x̄‖2 → 0. Let
ε := min{|(z̄)i| : (x̄)i = (`)i or (x̄)i = (u)i}. Due to the fact that A(x̄k)⊆A(x̄), we have
(z̄k)i > 0, if (x̄k)i = (`)i and (z̄k)i < 0, if (x̄k)i = (u)i, when ‖z̄k − z̄‖2 ≤ ε.

LEMMA 8. Let θk be selected in (0,1] such that the relaxed feasible region Ω̃k is
nonempty with θk but is empty with min{1.1θk,1}, and we can always achieve it based on
Lemma 5. If lim infk→∞ θk = 0, then there exists an accumulation point x∗ of {xk} where
EGMFCQ does not hold at x∗.
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PROOF. Without the loss of generality, we assume that limk→∞ θk = 0 and limk→∞xk =
x∗. Let lk := inf{‖zk‖2 : zk satisfies Condition (2.4) at xk}. The construction of θk = ε

‖zk‖2
in Equation (A.1) shows that lim supk→∞ lk =∞. Suppose that EGMFCQ holds at x∗ and
let l∗ = ‖z∗‖2 <∞ for some z∗ satisfying Condition (2.4) at x∗. It is a contradiction to
Lemma 7 as∞= lim supk→∞ lk ≤ l∗ <∞. Therefore, EGMFCQ does not hold at x∗.

EGMFCQ and its multiple variants are common in constrained optimization algorithms,
i.e., [11, 74]. According to the above proposition, EGMFCQ makes the relaxed SQP sub-
problem feasible. Instead of assuming the EGMFCQ at all iterates {xk}, which is difficult to
verify in real applications, a weaker and more explicit assumption (Assumption 1) is made.
Proposition 5 shows the reasonability of Assumption 1. To verify Assumption 1, as shown
in the deterministic SQP (RelaxedSQP, Algorithm 1), we first validate and adopt a feasible
Ω̃k with proper relaxation parameters θk. If Ω̃k is not feasible for small θk below the prede-
fined tolerance, then xk is close to a point where EGMFCQ does not hold, by Lemma 1. For
completeness, we put the definition of LICQ here.

DEFINITION 2 (Linear independence constraint qualification (LICQ)). The linear
independence constraint qualification (LICQ) is satisfied at a point x̃, if columns of
[∇c(x̃),IA(x̃)] are linearly independent, where A(x̃) := {i : (x̃)i = (`)i or (x̃)i = (u)i}
is the active set of inequality constraints at x̃.

A.2. EGMFCQ and Boundedness of Lagrangian Multipliers. The following Lemma
9 shows that if the sequence {xk} generated by the algorithm is convergent to a feasible point
x∗ satisfying EGMFCQ (Definition 1), then the corresponding Lagrangian multipliers of the
SQP subproblem are bounded.

LEMMA 9. If EGMFCQ is satisfied at x̄ which is feasible for both the equality and
inequality constraints (i.e., c(x̄) = 0 and ` ≤ x̄ ≤ u), then there exists a neighborhood
B(x̄; r0) := {x : ‖x − x̄‖2 ≤ r0} with some r0 > 0, such that the Lagrangian multipliers
of the SQP subproblems are bounded for all points in N (x̄; r0), under Assumptions 1 and 2.

PROOF. We prove it by contradiction. Suppose that there exist sequences {(x̄k, B̄k, λ̄
sub
k , µ̄sub

1,k, µ̄
sub
2,k)}

with Assumptions 1 and 2, such that x̄k → x̄,
∥∥∥(λ̄sub

k , µ̄sub
1,k, µ̄

sub
2,k)
∥∥∥

2
→∞ and κ1I � B̄k �

κ2I, where p̄k and (λ̄sub
k , µ̄sub

1,k, µ̄
sub
2,k) are the solution and the Lagrangian multipliers of the

SQP subproblem at x̄k with corresponding relaxing parameters θ̄k satisfying

∇f(x̄k) + B̄kp̄k +∇c(x̄k)λ̄sub
k − µ̄sub

1,k + µ̄sub
2,k = 0,

θ̄kc(x̄k) +∇c(x̄k)>p̄k = 0, `≤ x̄k + p̄k ≤ u,

µ̄sub>
1,k (x̄k + p̄k − `) = 0,

µ̄sub>
2,k (x̄k + p̄k −u) = 0,

µ̄sub
1,k ≥ 0, µ̄sub

2,k ≥ 0.

(A.2)

Note that the sequence {(λ̄sub
k , µ̄sub

1,k, µ̄
sub
2,k)/

∥∥∥(λ̄sub
k , µ̄sub

1,k, µ̄
sub
2,k)
>
∥∥∥

2
} is bounded. Without the

loss of generality, we assume that (λ̄sub
k , µ̄sub

1,k, µ̄
sub
2,k)/

∥∥∥(λ̄sub
k , µ̄sub

1,k, µ̄
sub
2,k)
>
∥∥∥

2
→ (λ̄, µ̄1, µ̄2),

p̄k→ p̄ and θ̄k = θ̄ (due to line 4 in Algorithm 1). Then dividing both two sides of the first
equality in Equation (A.2) by

∥∥(λ̄k, µ̄1,k, µ̄2,k)
>∥∥

2
and taking the limit of k→∞, we have

(A.3) ∇c(x̄)λ̄− µ̄1 + µ̄2 = 0.
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Moreover, the second equality in Equation (A.2) implies that

θ̄λ̄>c(x̄) =−λ̄>∇c(x̄)>p̄.

The third and the fourth equality in Equation (A.2) further shows that

µ̄>1 (x̄− `) =−µ̄>1 p̄ and µ̄>2 (x̄−u) =−µ̄>2 p̄.

Combing with the above four equalities, we have

(A.4) θ̄λ̄>c(x̄) + µ̄>1 (`− x̄) + µ̄>2 (x̄−u) = 0.

Note that µ̄1 ≥ 0 and µ̄2 ≥ 0, we can deduce from Equation (A.4) and c(x̄) = 0 that
(µ̄1) > 0 only if (x̄)i = (`)i and (µ̄2) > 0 only if (x̄)i = (u)i. The EGMFCQ condition
at x̄ (Definition 1) implies that there exists p ∈Rd such that c(x̄) +∇c(x̄)>p= 0, (p)i > 0
if (x̄)i = (`)i, and (p)i < 0 if (x̄)i = (u)i. Then −p>µ̄1 + p>µ̄2 < 0 if x̄ is on the bound-
ary of the box constraints. Multiplying both two sides of Equation (A.3) by −θ̄p, we have
0 =−θ̄p>(∇c(x̄)λ̄−µ̄1 +µ̄2) = θ̄c(x̄)>λ̄+ θ̄p>µ̄1− θ̄p>µ̄2. It is a contradiction to Equa-
tion (A.4). On the other hand, if x̄ is in the interior of the box constraints, µ̄1 = µ̄2 = 0. To-
gether with Equation (A.3), the linear independence of the columns of ∇c(x̄) shows λ̄= 0,
which is a contradiction to the fact that ‖(λ̄, µ̄1, µ̄2)>‖2 = 1.

COROLLARY 2. If all accumulation points of the sequence {xk} are feasible and sat-
isfy EGMFCQ, then the Lagrangian multipliers of the corresponding SQP subproblems are
bounded.

PROOF. We first show that the Lagrangian multipliers of the corresponding SQP subprob-
lems are bounded at all accumulation points of {xk}, denoted as X . Note that the set X is
closed, any accumulation point of X is also an accumulation point of {xk}.

Secondly, by Lemma 9, for a sufficiently large number MLag > 0 and any point x∗i ∈ X ,
there exists ri > 0 such that the Lagrangian multipliers of the corresponding SQP subprob-
lems are bounded at x for any x ∈ ∪∞i=1B(x∗i ; ri). There must be a finite subset of {xk}, that
is outside ∪∞i=1B(x∗i ; ri) (otherwise, we can still find an accumulation point). We complete
the proof.

A.3. Proof for Theorem 1. The proof directly comes from the following lemmas. The
first lemma here shows that the directional derivative of the merit function is controlled by
the improvement ∆q(x,p,∇f(x),B, ρ).

LEMMA 10. Under Assumption 2, given (x, ρ, θ,B,p) ∈Rn ×R>0 × (0,1]× Sn+ ×Rn
with θc(x) +∇c(x)>p= 0, then the directional derivative of φ(x, ρ) along p satisfies

φ′(x, ρ;p) =∇f(x)>p− ρθ‖c(x)‖2

≤∇f(x)>p+
1

2
p>Bp− ρθ‖c(x)‖2

=−∆q(x,p,∇f(x),B, ρ).

(A.5)
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PROOF. We prove it by the definition of the directional derivative. Suppose that ‖∇2f(x)‖2 ≤
M for some M > 0. First,

φ(x+ αp, ρ)− φ(x, ρ)

=f(x+ αp) + ρ‖c(x+ αp)‖2 − f(x)− ρ‖c(x)‖2

≤α∇f(x)>p+
κ∇f

2
α2‖p‖22 + ρ‖c(x+ αp)‖2 − ρ‖c(x)‖2

=α∇f(x)>p+
κ∇f

2
α2‖p‖22 + ρ (|1− αθ| − 1)‖c(x)‖2 +

κ∇c
2
α2‖p‖22

=α
(
∇f(x)>p− ρθ‖c(x)‖2

)
+
κ∇f + κ∇c

2
α2‖p‖22.

(A.6)

On the other side, similarly, we have φ(x+αp, ρ)−φ(x, ρ)≥ α
(
∇f(x)>p− ρθ‖c(x)‖2

)
−

κ∇f+κ∇c

2 α2‖p‖22. Taking limits for α → 0 and the definition, we have φ′(x, ρ;p) =

∇f(x)>p− ρθ‖c(x)‖2 ≤−∆q(x,p,∇f(x),B, ρ).

We incorporate a backtracking line search in the algorithm while [6] adopted Lipschitz
constant estimation for step size selection. We prove that under mild smoothness conditions,
the line search condition will be met after a finite number of search steps. Specifically, the
backtracking search loop is guaranteed to terminate within a bounded number of iterations.

LEMMA 11. The strategies in Equations (2.5) and (2.6) for ρk guarantee that ∆q(xk,pk,Bk;ρk)≥
1
2p
>
kBkpk + σρkθk‖c(xk)‖2 for some σ ∈ (0,1). Therefore, combining it with Lemma

10, we have that the backtracking line search condition φ(xk + αkpk, ρk) ≤ φ(xk, ρk) −
βαk∆q(xk,pk,∇f(xk),Bk;ρk) always holds for αk ≤ (1−β)κ1

κ∇f+κ∇c
.

PROOF. Equation (A.6) in Lemma 10 shows that φ(xk + αkpk, ρk) − φ(xk, ρk) ≤
αk
(
∇f(xk)

>pk − ρkθk‖c(xk)‖2
)

+ κ∇f+κ∇c

2 α2
k‖pk‖22. Here, we let αk to be small enough

such that

αk

(
∇f(xk)

>pk − ρkθk‖c(xk)‖2
)

+
κ∇f + κ∇c

2
α2
k‖pk‖22

≤− αk∆q(xk,pk,∇f(xk),Bk;ρk) +
κ∇f + κ∇c

2
α2
k‖pk‖22

≤− βαk∆q(xk,pk,∇f(xk),Bk;ρk),

i.e., κ∇f+κ∇c

2 αk‖pk‖22 ≤ (1−β)∆q(xk,pk,∇f(xk),Bk;ρk). Here, we let κ∇f+κ∇c

2 αk‖pk‖22 ≤
(1−β)κ1

2 ‖pk‖22 ≤
1−β

2 p>kBkpk, i.e., αk ≤ (1−β)κ1

κ∇f+κ∇c
. In conclusion, the backtracking line

search condition holds when αk ≤ (1−β)κ1

κ∇f+κ∇c
.

The next lemma demonstrates that if the Lagrange multipliers are bounded, then the
penalty parameter will stabilize. This result is crucial for the global convergence of the al-
gorithm, as convergence is only assured subsequent to the penalty parameter’s stabilization.
Specifically, once the penalty parameter stabilizes, the merit function’s convergence naturally
leads to the convergence of the iterates.

LEMMA 12. Under Assumption 1, θk ≥ τ̃ θ̃ holds for all k = 0,1, · · · . If we further as-
sume that Assumption 2 holds, then the sequence {ρk} is monotonically increasing and there
exists a large enough K̃ ∈ Z, such that ρk = ρ̃ > 0 for all k ≥ K̃ , where ρ̃≤ (1+ε)MLag

(1−σ)τ̃ θ̃
.
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PROOF. Under Assumption 1, it is obvious that θk ≥ τ̃ θ̃ holds in our algorithm, for all
k = 0,1, · · · . If there does not exist ρ̃ > 0 and K̃ ∈ Z such that ρk = ρ̃ > 0 for k ≥ K̃ ,
according to Equation (2.6), then there is an infinite sequence {kj} ⊆ Z+ where ρtrial

kj
>

ρkj−1 and ρkj = (1+ ε)ρtrial
kj

. It further implies that−∇f(xk)
>pk−p>kBkpk < 0 and ρtrial

kj
=

∇f(xk)>pk+p>kBkpk

(1−σ)θk‖c(xk)‖2 , by Equation (2.5). The KKT conditions for the relaxed SQP Subproblem
(2.7) show that there exist some (λsub

k ,µsub
1,k,µ

sub
2,k) satisfying

∇f(xk) +Bkpk +∇c(xk)λsub
k −µsub

1,k +µsub
2,k = 0,

θkc(xk) +∇c(xk)>pk = 0,

`≤ xk + pk ≤ u,

µsub>
1,k (xk + pk − `) = 0,

µsub>
2,k (xk + pk −u) = 0,

µsub
1,k ≥ 0 and µsub

2,k ≥ 0.

(A.7)

Multiplying both two sides of the first equality by pk, we have

∇f(xk)
>pk + p>kBkpk =−p>k∇c(xk)λsub

k + p>k µ
sub
1,k − p>k µsub

2,k

= θkλ
sub>
k c(xk)−µsub>

1,k (xk − `) +µsub>
2,k (xk −u)

≤ θkλsub>
k c(xk)≤ ‖λsub

k ‖2‖c(xk)‖2 ≤MLag‖c(xk)‖2,

where the first inequality comes from µsub
1,k ≥ 0, µsub

2,k ≥ 0, and `≤ xk ≤ u. Then,

(A.8) ρkj−1 < ρtrial
kj =

∇f(xkj )
>pkj + p>kjBkjpkj

(1− σ)θkj‖c(xkj )‖2
≤

MLag

(1− σ)θkj
≤

MLag

(1− σ)τ̃ θ̃
.

However, ρkj = (1 + ε)ρtrial
kj

> (1 + ε)ρkj−1 implies that ρkj−1 →∞ as kj →∞. It is a

contradiction. Therefore, there exist ρ̃ > 0 and a large enough K̃ ∈ Z, such that ρk = ρ̃ > 0

for all k ≥ K̃ . Here, we can also conclude from Equation (A.8) that ρ̃≤ (1+ε)MLag

(1−σ)τ̃ θ̃
.

PROPOSITION 1. If we suppose that all accumulation points of the generated sequence
{xk} satisfies EGMFCQ, then limk ρk <∞.

PROOF. Suppose that limk→∞ ρk =∞, then we can find a subsequence {kj} ⊆ Z+ such
that ρkj > ρkj−1 and ρk = ρk−1 for k /∈ {kj}. By the fact that

ρtrial
kj =

∇f(xkj )
>pkj + p>kjBkjpkj

(1− σ)θkj‖c(xkj )‖2
≤
M∇fM`,u + κ2M

2
`,u

(1− σ)τ̃ θ̃‖c(xkj )‖2
,

we have limj→∞
∥∥c(xkj )∥∥2

= 0. By Lemmas 9 and 12, it is a contradiction.

Proposition 1 shows the boundedness of the penalty parameters from the constraint quali-
fication perspective. More specifically, if EGMFCQ holds for all accumulation points of the
sequence {xk}, then the penalty parameter is guaranteed to be bounded. Given that we up-
date the penalty parameter by multiplying it by a factor greater than one, it follows that the
penalty parameter will eventually stabilize.
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LEMMA 13. Under Assumptions 1 and 2, there exist sufficiently large K̃ ∈ Z+ and ρ̃ > 0,
such that ρk = ρ̃ for all k ≥ K̃ and

(A.9) φ(xk, ρ̃)− φ(xk+1, ρ̃)≥ β(1− β)τκ1ρ̃τ̃ θ̃σ

κ∇f + κ∇c
‖c(xk)‖2 +

β(1− β)κ2
1

2(κ∇f + κ∇c)
‖pk‖22.

PROOF. By Lemma 12, the penalty parameter ρk becomes stable when k ≥ K̃ for some
sufficiently large K̃ ∈ Z+, i.e., ρk = ρ̃ for k ≥ K̃ . Next, we only consider the iterates when
ρk becomes stable. The backtracking line search guarantees that

φ(xk, ρ̃)−φ(xk+1, ρ̃)≥ βαk∆q(xk,pk,∇f(xk),Bk, ρ̃)≥ βαk ·
(

1

2
p>kBkpk + σρ̃θk‖c(xk)‖2

)
.

By Lemma 11, we have αk ≥ τ(1−β)κ1

κ∇f+κ∇c
by the backtracking line search. Furthermore, by the

positive-definiteness of Bk (i.e., Bk � κ1I) and the lower-boundedness of θk (i.e., θk ≥ τ̃ θ̃),
together with the stabilization of ρk (i.e., ρk = ρ̃) and the lower-boundedness of αk (i.e.,
αk ≥ τ(1−β)κ1

κ∇f+κ∇c
), we complete the proof for Equation (A.9).

Proof for Theorem 1. It is a direct result of Lemma 13. Here, we only consider the case
where the penalty parameter ρk becomes stable. By the boundedness of the feasible region
(i.e., `≤ x≤ u) and smoothness of the objective and the constraints, we have that φ(x, ρ̃) is
(lower and upper) bounded. Then Equation (A.9) implies that

β(1− β)τκ1ρ̃τ̃ θ̃σ

κ∇f + κ∇c

∞∑
k=K̃

‖c(xk)‖2 +
β(1− β)κ2

1

2(κ∇f + κ∇c)

∞∑
k=K̃

‖pk‖22 <∞,

which completes the proof for Equation (2.12). Conditions in Equation (A.7) show that
‖∇f(xk) + ∇c(xk)λsub

k − µsub
1,k + µsub

2,k‖2 = ‖Bkpk‖2 ≤ κ2‖pk‖2, ‖µsub
1,k � (x − `)‖2 ≤

µsub>
1,k (x − `) ≤MLag‖pk‖2 and ‖µsub

2,k � (x − u)‖2 ≤ µsub>
1,k (u − x) ≤MLag‖pk‖2, then

Equation (2.13) is straightforward.

A.4. Proof for Lemma 2. Denote A∗ =A(x∗) := {i : (x∗)i = (`)i or (x∗)i = (`)i} the
active set of inequality constraints at x∗. Denote ε= min{(x∗−`)i, (u−x∗)i, i ∈A∗−}> 0.
First, let xk be sufficiently close to x∗ such that ‖xk−x∗‖∞ ≤ 1

4ε, then min{(xk−`)i, (u−
xk)i, i ∈ A∗−} ≥ 3

4ε. Since EGMFCQ holds at x∗, there exists a vector z∗ ∈ Rd satisfying
Condition (2.4) at x∗. The fact that c(x∗) = 0 further implies that we can scale the vector z∗

by some constants such that

c(x∗) +∇c(x∗)>z∗ = 0,

(z∗)i > 0, if (x∗)i = (`)i,

(z∗)i < 0, if (x∗)i = (u)i,

‖z∗‖∞ ≤ ε/2.

By the smoothness of c(x) and the linear independence of columns of ∇c(x∗), we can
find zk such that c(xk) + ∇c(xk)>zk = 0 and ‖zk − z∗‖∞ ≤ 1

2 min{|(z∗)i| : (x∗)i =

(`)i or (x∗)i = (u)i} ≤ 1
4ε as ‖xk −x∗‖2→ 0. Then ‖zk‖∞ ≤ ‖zk−z∗‖∞+‖z∗‖∞ ≤ 3

4ε;
(zk)i > 0, if (x∗)i = (`)i and (zk)i < 0, if (x∗)i = (u)i. Together with the fact that
min{(xk − `)i, (u − xk)i, i ∈ A∗−} ≥ 3

4ε, we show ` ≤ xk + zk ≤ u. Therefore, θk = 1
is always accepted if xk is sufficiently close to x∗.
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APPENDIX B: PROOF FOR THEOREM 2 AND 3

B.1. Some Technical Lemmas for Theorem 2. We first show that the adaptivity param-
eter will stabilize after sufficient iterations.

LEMMA 14. Under Assumption 3, there exists a constant ξ̄ > 0 such that ξk = ξ̄ for all
sufficiently large k.

PROOF. Observe that the sequence {ξk} is monotonically decreasing and ξk < ξk−1 holds
if and only if ξtrial

k < ξk−1 and ξk ≤ (1−εξ)ξk−1. Suppose limk→∞ ξk = 0, then it follows that
lim infk→∞ ξ

trial
k = 0. However, the selection of ρk guarantees that ∆q(xk, p̄k, ḡk,Bk, ρk)≥

1
2 p̄
>
kBkp̄k ≥ κ1

2 ‖p̄k‖
2
2, implying that ξtrial

k ≥ κ1

2 . It is a contradiction. Therefore, we conclude
that limk→∞ ξk > 0.

The following lemma is essential in our subsequent analysis and is extended from Lemma
A.3 in [51]. The results investigate the competition and reveal the asymptotic behavior be-
tween the two sequences {αk} and {βk}. Importantly, we observe that when {αk} decays
faster than {βk}, the asymptotic behavior of terms described in the lemma is dominated by
the sequence {αk}, resulting in the asymptotic normality of the generated iterates with aver-
aged gradient as studied in Section 4.

LEMMA 15 (Lemma A.3 in [51]). For two sequences {αk} and {βk} satisfying αk =
ι1(k+ 1)−b1 and βk = ι2(k+ 1)−b2 with ι1, ι2 > 0 and b1, b2 > 0, the followings hold

1. Define χ= 0 if 0< b2 < 1 and χ=− b1
ι2

if b2 = 1, then

lim
k→∞

1

αk

k∑
i=0

k∏
j=i+1

l∏
t=1

(1− atβj)βiαi =
1∑l

t=1 at + χ
,

where we require that
∑l

t=1 at + χ> 0. Moreover,

lim
k→∞

 1

αk

k∑
i=0

k∏
j=i+1

l∏
t=1

(1− atβj)βiαiei + b

k∏
j=0

l∏
t=1

(1− atβj)

= 0,

for any b ∈R and ei→ 0.
2. If 0< b2 < b1 ≤ 1, then

lim
k→∞

1

αk

k∑
i=0

k∏
j=i+1

(1− αj) (1− βj)αiβi = 1.

LEMMA 16. For two given sequence {αk} and {βk} satisfying limk→∞αk = 0,
limk→∞ βk = 0, and limk→∞αk/βk = 0, then

(B.1) lim
k→∞

E
[
‖ḡk −∇f(xk)‖22

]
= 0.

Therefore, there exists a number Mσ > 0 such that

E
[
‖ḡk −∇f(xk)‖22

]
≤M2

σ ,

under Assumption 3.



AN OPTIMAL METHOD FOR CONSTRAINED STOCHASTIC OPTIMIZATION 41

PROOF. By the update scheme of ḡk, we have

ḡk −∇f(xk) = βk (gk −∇f(xk)) + (1− βk) (ḡk−1 −∇f(xk−1))

+ (1− βk) (∇f(xk−1)−∇f(xk))

= βk (gk −∇f(xk)) + (1− βk){βk−1 (gk−1 −∇f(xk−1)) + (1− βk−1) (ḡk−2 −∇f(xk−2))

+ (1− βk−1) (∇f(xk−2)−∇f(xk−1))}+ (1− βk) (∇f(xk−1)−∇f(xk))

= · · ·

=

k∑
i=0

 k∏
j=i+1

(1− βj)

βi (gi −∇f(xi))

+

k∑
i=1

 k∏
j=i

(1− βj)

 (∇f(xi−1)−∇f(xi))

:=W1 +W2.

Here, bothW1 andW2 are random variables. By Lemma 15 and the fact that

‖W2‖2 ≤
k∑
i=1

 k∏
j=i

(1− βj)

αi−1M`,u,

we haveW2→ 0 as k→∞ since limk→∞αi−1/βi = 0. It follows that limk→∞E [ḡk −∇f(xk)] =
limk→∞E [W1] = 0, since

E
[
‖W1‖22

]
=

k∑
i=0

 k∏
j=i+1

(1− βj)

2

β2
i E
[
‖gi −∇f(xi)‖22

]

≤σ2
g

k∑
i=0

 k∏
j=i+1

(1− βj)

2

β2
i → 0 as k→∞,

where the last convergence result comes from Lemma 15. Therefore, limk→∞E
[
‖ḡk −∇f(xk)‖22

]
≤

2 limk→∞E
[
‖W1‖22

]
+ 2 limk→∞ ‖W2‖22 = 0, which completes the first part of the proof.

The second result is straightforward since a convergent sequence must be bounded.

The above lemma establishes the convergence of the averaged gradient to the exact gradi-
ent in expectation, by utilizing the asymptotic behavior of two sequences in Lemma 15. The
lemma not only assures us of the asymptotic validity of using ḡk as a surrogate for ∇f(xk),
but also offers a bound for their difference, lending confidence in the effectiveness of the
algorithm. Following this, the next lemma studies the perturbation robustness property of
the quadratic SQP subproblems and implies that the solutions are Lipschitz continuous with
respect to the gradients. Consequently, the fact that the averaged gradient is asymptotically
convergent to the exact gradient implies that the Debiased-StoSQP is arbitrarily close to the
deterministic algorithm after sufficiently many iterations. This constitutes one of the most
significant advantages of Debiased-StoSQP, employing averaged gradients, over other fully
stochastic algorithms [6, 20].
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LEMMA 17. Suppose Assumptions 1 , 2 and 3 hold, then

(B.2) ‖p̄k − pk‖2 ≤ κ
−1
1 ‖ḡk −∇f(xk)‖2 ,

and

Ek ‖p̄k − pk‖2 ≤ κ
−1
1 Ek ‖ḡk −∇f(xk)‖2 .

PROOF. The relaxed SQP subproblem at xk with the averaged gradient ḡk can be written
as

min
p∈Ω̃k

1

2

∥∥p+B−1
k ḡk

∥∥2

Bk
,

which is a convex-constrained quadratic problem. The variational inequality implies that〈
pk − p̄k,−B−1

k ḡk − p̄k
〉
Bk
≤ 0.

Since pk is the solution of the relaxed SQP subproblem at xk with exact gradient ∇f(xk),
we similarly have 〈

p̄k − pk,−B−1
k ∇f(xk)− pk

〉
Bk
≤ 0.

Summing up the above two inequalities, we have

0≥
〈
pk − p̄k,−B−1

k ḡk − p̄k +B−1
k ∇f(xk) + pk

〉
Bk

= ‖pk − p̄k‖2Bk
+ 〈p̄k − pk, ḡk −∇f(xk)〉

≥ ‖pk − p̄k‖2Bk
− ‖pk − p̄k‖2 · ‖ḡk −∇f(xk)‖2 .

(B.3)

Note that ‖pk − p̄k‖2Bk
≥ κ1 ‖pk − p̄k‖22, combining with Assumption 3, we complete the

proof.

LEMMA 18. Suppose that Assumptions 2 and 3 hold, then

(B.4) Ek
[∣∣∣(∇f(xk)− ḡk)> p̄k

∣∣∣]≤MσM`,u,

(B.5) Ek
[∣∣∣∇f(xk)

>pk − ḡ>k p̄k
∣∣∣]≤MσM`,u + 2 (M∇f +Mσ)M`,u,

and

(B.6) Ek
[∣∣∣p>kBkpk − p̄>kBkp̄k

∣∣∣]≤ 2κ−1
1 κ2M`,uMσ.

PROOF. The first relation is straightforward since Ek [‖ḡk −∇f(xk)‖2] ≤ Mσ and
‖p̄k‖2 ≤M`,u. By triangle inequalities, we have

Ek
[∣∣∣∇f(xk)

>pk − ḡ>k p̄k
∣∣∣]

=Ek
[∣∣∣(∇f(xk)− ḡk)> pk + ḡ>k (pk − p̄k)

∣∣∣]
≤MσM`,u + 2 (M∇f +Mσ)M`,u,

and

Ek
[∣∣∣p>kBkpk − p̄>kBkp̄k

∣∣∣]
=Ek

[∣∣∣(pk − p̄k)>Bk (pk + p̄k)
∣∣∣]

≤2κ2M`,uEk [‖pk − p̄k‖]≤ 2κ−1
1 κ2M`,uMσ.
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LEMMA 19. Suppose that Assumptions 1 , 2 and 3 hold, then

Ek [|∆q(xk,pk,∇f(xk),Bk;ρk)−∆q(xk, p̄k, ḡk,Bk;ρk)|]

≤MσM`,u + 2 (M∇f +Mσ)M`,u + κ−1
1 κ2M`,uMσ.

(B.7)

PROOF. Note that ∆q(xk,pk,∇f(xk),Bk;ρk) =−∇f(xk)
>pk− 1

2p
>
kBkpk+ρkθk‖c(xk)‖2,

where the last term ρkθk‖c(xk)‖2 is independent of∇f(xk) and pk. Using results in Lemma
18, we have

Ek [|∆q(xk,pk,∇f(xk),Bk;ρk)−∆q(xk, p̄k, ḡk,Bk;ρk)|]

=Ek
[∣∣∣∣−∇f(xk)

>pk + ḡ>k p̄k −
1

2
p>kBkpk +

1

2
p̄>kBkp̄k

∣∣∣∣]
≤Ek

[∣∣∣−∇f(xk)
>pk + ḡ>k p̄k

∣∣∣]+
1

2
Ek
[∣∣∣p>kBkpk − p̄>kBkp̄k

∣∣∣]
≤MσM`,u + 2 (M∇f +Mσ)M`,u + κ−1

1 κ2M`,uMσ.

LEMMA 20. In line 10 of Algorithm 2, the step size αk is selected from the interval
[αmin
k , αmax

k ] :=
[

ξkγk
κ∇f+ρkκ∇c

, ξkγk
κ∇f+ρkκ∇c

+ %γ2
k

]
, then

Ek
[
αk∇f(xk)

> (p̄k − pk)
]
≤ %γ2

kM∇fκ
−1
1 Mσ + αmin

k Ek
[
∇f(xk)

> (p̄k − pk)
]
,(B.8)

under Assumptions 2 and 3.

PROOF. Denote the event Ck = {∇f(xk)
> (p̄k − pk)≥ 0}, then

Ek
[
αk∇f(xk)

> (p̄k − pk)
]

=Ek
[
αk∇f(xk)

> (p̄k − pk) |Ck
]

+Ek
[
αk∇f(xk)

> (p̄k − pk) |Cck
]

≤αmax
k Ek

[
∇f(xk)

> (p̄k − pk) |Ck
]

+ αmin
k Ek

[
∇f(xk)

> (p̄k − pk) |Cck
]

=αmin
k Ek

[
∇f(xk)

> (p̄k − pk)
]

+
(
αmax
k − αmin

k

)
Ek
[
∇f(xk)

> (p̄k − pk) |Ck
]

≤αmin
k Ek

[
∇f(xk)

> (p̄k − pk)
]

+ %γ2
kM∇fκ

−1
1 Mσ.

LEMMA 21. Under Assumptions 1, 2 and 3, if
∑∞

k=0 γk = ∞,
∑∞

k=0 γ
2
k < ∞ and∑∞

k=K̄ α
min
k E [‖p̄k − pk‖2]<∞, then

(B.9)
∞∑
k=K̄

αmin
k ∆q(xk,pk,∇f(xk),Bk; ρ̄)<∞, almost surely.

It further implies that

(B.10) lim inf
k→∞

∆q(xk,pk,∇f(xk),Bk; ρ̄) = 0, almost surely.
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PROOF. We only consider the case when ρk and ξk becomes stable, i.e., ρk = ρ̄ and ξk = ξ̄
for all k ≥ K̄ . It follows from Assumptions 1, 2 and 3 that

Ek [φ(xk+1, ρ̄)− φ(xk, ρ̄)]

=Ek [f(xk + αkp̄k)− f(xk) + ρ̄ (‖c(xk + αkp̄k)‖2 − ‖c(xk)‖2)]

≤Ek
[
αk∇f(xk)

>p̄k +
κ∇f

2
α2
k‖p̄k‖22 + ρ̄

(∥∥∥c(xk) + αk∇c(xk)>p̄k)
∥∥∥

2
− ‖c(xk)‖2 +

κ∇c
2
α2
k‖p̄k‖22

)]
=Ek

[
αk∇f(xk)

>p̄k − αkρ̄θk ‖c(xk)‖2 +
κ∇f + ρ̄κ∇c

2
α2
k‖p̄k‖22

]
=Ek

[
αk∇f(xk)

>pk + αk∇f(xk)
> (p̄k − pk)− αkρ̄θk ‖c(xk)‖2 +

κ∇f + ρ̄κ∇c
2

α2
k‖p̄k‖22

]
=Ek

[
−αk∆q(xk,pk,∇f(xk),Bk, ρ̄)− αk

2
p>kBkpk + αk∇f(xk)

> (p̄k − pk) +
κ∇f + ρ̄κ∇c

2
α2
k‖p̄k‖22

]
≤Ek

[
−αk∆q(xk,pk,∇f(xk),Bk, ρ̄)− αk

2
p>kBkpk + αk∇f(xk)

> (p̄k − pk)

+
1

2
αkγk∆q(xk, p̄k,∇f̄(xk),Bk, ρ̄)

]
,

=Ek
[(
−αk +

1

2
αkγk

)
∆q(xk,pk,∇f(xk),Bk, ρ̄) + αk∇f(xk)

> (p̄k − pk)

+
1

2
αkγk

(
∆q(xk, p̄k,∇f̄(xk),Bk, ρ̄)−∆q(xk,pk,∇f(xk),Bk, ρ̄)

)]
,

(B.11)

where the last inequality comes from the selection of ξk and αk in lines 10 and 11, respec-
tively. Without the loss of generality, we assume that γk ≤ 1 and continue from Equation
(B.11),

Ek [φ(xk+1, ρ̄)− φ(xk, ρ̄)]

≤Ek
[
−1

2
αmin
k ∆q(xk,pk,∇f(xk),Bk, ρ̄)

]
+M∇fα

min
k Ek [‖p̄k − pk‖2] + %γ2

kM∇fκ
−1
1 Mσ

+
1

2
αmax
k γk

(
MσM`,u + 2 (M∇f +Mσ)M`,u + κ−1

1 κ2M`,uMσ

)
,

where the inequality is due to Lemmas 19 and 20. It further implies that

Ek
[
φ(xk+1, ρ̄)− min

`≤x≤u
φ(x, ρ̄)|Fk−1

]

≤φ(xk, ρ̄)− min
`≤x≤u

φ(x, ρ̄)− 1

2

K̄+K∑
k=K̄

αmin
k Ek [∆q(xk,pk,∇f(xk),Bk, ρ̄)|Fk−1]

+M∇f

K̄+K∑
k=K̄

αmin
k Ek [‖p̄k − pk‖2 |Fk−1] + %M∇fκ

−1
1 Mσ

K̄+K∑
k=K̄

γ2
k

+
1

2

(
MσM`,u + 2 (M∇f +Mσ)M`,u + κ−1

1 κ2M`,uMσ

) K̄+K∑
k=K̄

αmax
k γk.

(B.12)
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Since
∑∞

k=0 γ
2
k <∞, αmin

k =O (γk) and αmax
k =O

(
γk + γ2

k

)
, we have

∑∞
k=0α

max
k γk <∞.

Note that E
[∑∞

k=K̄ α
min
k Ek [‖p̄k − pk‖2 |Fk−1]

]
=
∑∞

k=K̄ α
min
k E [‖p̄k − pk‖2] <∞ shows

that
∑∞

k=K̄ α
min
k Ek [‖p̄k − pk‖2 |Fk−1] <∞. We conclude from Equation (B.12), the step

size αmin
k = O (γk), the assumption

∑∞
k=K̄ α

min
k Ek [‖p̄k − pk‖2 |Fk−1] <∞ and Robbins-

Siegmund theorem [59] that Equation (B.9) holds. Moreover, since
∑∞

k=0 γk =∞, together
with Equation (B.9), we obtain Equation (B.10).

B.2. Proof for Theorem 2. Note that although {γk} is the pre-defined sequence in the
algorithm, the only difference between αk and γk is a constant. Therefore, αmin

k = ι1(k +
1)−1 implies that γk = ι3(k + 1)−1 for some ι3 > 0. For simplicity, we directly discuss the
behavior of the sequence related to αmin

k rather than γk. We need the techniques and notations

in the proof of Lemma 16, where all conditions are satisfied and E
[
‖ḡk −∇f(xk)‖22

]
≤

2E
[
‖W1‖22

]
+ 2E

[
‖W2‖22

]
. In details,

E
[
‖W1‖22

]
=

k∑
i=0

 k∏
j=i+1

(1− βk)

2

β2
i E
[
‖gi −∇f(xi)‖22

]

≤σ2
g

k∑
i=0

 k∏
j=i+1

(1− βk)

2

β2
i =O (βk) ,

by utilizing Lemma 15. Similarly, for ‖W2‖2, we have

‖W2‖2 ≤M`,u

k∑
i=1

 k∏
j=i

(1− βj)

αmin
i−1 =O

(
αmin
k /βk

)
.

Therefore, we conclude that E [‖ḡk −∇f(xk)‖2]≤O
(
βk + αmin

k /βk
)
. Since αmin

k = ι1(k+

1)−b1 , it is not difficult to verify that
∑∞

k=K̄ α
min
k E [‖p̄k − pk‖2] <∞, if b1 + b2

2 > 1 and
2b1 − b2 > 1. We equivalently require that b1 ∈ (3

4 ,1] and b2 ∈ (2− 2b1,2b1 − 1).

B.3. Proof for Theorem 3. We first show that the Problem (3.6) is convex and then the
corresponding solution (λ∗k,µ

∗
1,k,µ

∗
2,k) is well-defined. The stability of quadratic problems

in Lemma 23 is an generalization of Lemma 17.

LEMMA 22. Problem (3.6) is convex, i.e., the Hessian matrix ∇2F (λ,µ1,µ2;x) is pos-
itive semi-definite for any x, λ, µ1 and µ2.

PROOF. The direct computation of the Hessian matrix for F (λ,µ1,µ2;x) is
(B.13)

∇2F (λ,µ1,µ2;x) =


2∇c(x)>∇c(x) −2∇c(x) 2∇c(x)

−2∇c(x)> 2I + 2diag
(

(x− `)2
)

−2I

2∇c(x)> −2I 2I + 2diag
(

(x−u)2
)
 .

For any vector w = (w1,w2,w3) ∈Rr ×Rd ×Rd,

w>∇2F (λ,µ1,µ2;x)w = ‖∇c(x)w1 −w2 +w3‖22 +‖(x− `)�w2‖22 +‖(x−u)�w3‖22 ≥ 0.

Therefore, Problem (3.6) is convex.
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LEMMA 23 (Stability of Quadratic Programs, Theorem 2.1 in [21]). For two constrained
strongly convex quadratic problems

y∗ ∈min
y∈Λ

g>y+
1

2
y>Qy,

and

y∗∗ ∈min
y∈Λ

g′>y+
1

2
y>Q′y,

where the feasible region Λ is convex. Suppose that max{‖y∗‖2 ,‖y∗∗‖2} ≤My for some
My > 0. If ε= max{‖g− g′‖2 ,‖Q−Q′‖2} and both two matrices Q,Q′ are positive defi-
nite with υ1I �Q,Q′ � υ2I , for some 0< υ1 ≤ υ2. Then, the following holds

‖y∗ − y∗∗‖2 ≤ ευ
−1
1 (1 +My) .

LEMMA 24. Under assumptions in Theorem 3, we have

lim
k→∞

F (λ∗k,µ
∗
1,k,µ

∗
2,k;xk) = 0, almost surely.

PROOF. Denote (λsub
k ,µsub

1,k,µ
sub
2,k) as Lagrangian multipliers of the relaxed SQP subprob-

lem at xk with full gradient ∇f(xk). It follows that

F (λ∗k,µ
∗
1,k,µ

∗
2,k;xk)≤ F (λsub

k ,µsub
1,k,µ

sub
2,k;xk)≤ ‖Bkpk‖22 +

∥∥µsub
1,k � pk

∥∥2

2
+
∥∥µsub

2,k � pk
∥∥2

2

≤ (κ2 + 2MLag)‖pk‖22 ,
then

lim inf
k→∞

F (λ∗k,µ
∗
1,k,µ

∗
2,k;xk) = 0,

by lim infk→∞ ‖pk‖2 = 0. Suppose that lim supk→∞F (λ∗k,µ
∗
1,k,µ

∗
2,k;xk)> 0, we can find

a sufficiently small number ε > 0 and two infinite sequences {mi} and {ni} with K̄ ≤mi <
ni, such that

F (λ∗mi
,µ∗1,mi

,µ∗2,mi
;xmi

)> 2ε, ‖pni
‖2 ≤

√
ε

κ2 +MLag
,

and

‖pk‖2 ≥
√

ε

κ2 +MLag
, for mi ≤ k < ni.

Note that we can always achieve it due to the following derivation

F (λ∗k,µ
∗
1,k,µ

∗
2,k;xk) = min

λ,µ1≥0,µ2≥0
F (λ,µ1,µ2;xk)

≤ min
λ,µ1≥0,µ2≥0

{
F (λ,µ1,µ2;xk) +

ε

6M2
Lag
‖(λ,µ1,µ2)‖22

}

≤ F (λsub
k ,µsub

1,k,µ
sub
2,k;xk) +

ε

6M2
Lag

∥∥(λsub
k ,µsub

1,k,µ
sub
2,k)
∥∥2

2

≤ ‖Bkpk‖22 +
∥∥µsub

1,k � pk
∥∥2

2
+
∥∥µsub

2,k � pk
∥∥2

2
+
ε

2

≤ (κ2 + 2MLag)‖pk‖22 +
ε

2
.

(B.14)
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Here, F (λ∗mi
,µ∗1,mi

,µ∗2,mi
;xmi

) > 2ε automatically implies that ‖pmi
‖2 ≥

√
3ε

2(κ2+MLag)
.

Since lim infk→∞ ‖pk‖2 = 0, there must exists ni >mi such that ‖pni
‖2 ≤

√
ε

κ2+MLag
. Let

F̃ (λ,µ1,µ2;x) = F (λ,µ1,µ2;xk) +
ε

6M2
Lag
‖(λ,µ1,µ2)‖22 .

It also implies that F̃ (λ∗∗mi
,µ∗∗1,mi

,µ∗∗2,mi
;xmi

) ≥ 2ε and F̃ (λ∗∗ni
,µ∗∗1,ni

,µ∗∗2,ni
;xni

) ≤ (κ2 +

2MLag)‖pni
‖22 + ε

2 ≤
3
2ε, where (λ∗∗mi

,µ∗∗1,mi
,µ∗∗2,mi

) ∈ minλ,µ1≥0,µ2≥0 F̃ (λ,µ1,µ2;xmi
)

and (λ∗∗ni
,µ∗∗1,ni

,µ∗∗2,ni
) ∈minλ,µ1≥0,µ2≥0 F̃ (λ,µ1,µ2;xni

). Note that the function F̃ (λ,µ1,µ2;x)
is strictly positive-definite with

ε

6M2
Lag
≤
∥∥∥∇2F̃ (λ,µ1,µ2;x)

∥∥∥
2
≤ 2

(
M2
∇c + 4M2

∇c + 2M2
`,u + 4

)
.

For simplicity, we denote wk = (λ∗∗k ,µ
∗∗
1,k,µ

∗∗
2,k), then

ε

6M2
Lag
‖wk‖22 ≤ min

λ,µ1≥0,µ2≥0
F̃ (λ,µ1,µ2;x)≤ (κ2 + 2MLag)‖pk‖22 +

ε

2
,

and thus

(B.15) ‖wk‖2 ≤

√
6M2

Lag (κ2 + 2MLag)M2
`,u

ε
+ 3MLag,

for all k ∈N.
We first write F̃ (λ,µ1,µ2;xk) into the general quadratic form that

F̃ (λ,µ1,µ2;xk) = ‖∇f(xk)‖22 + q>k w+
1

2
w>Qkw,

where

qk =

2∇c(xk)>∇f(xk)
−2∇f(xk)
2∇f(xk)


and

Qk =


2∇c(xk)>∇c(xk) −2∇c(xk) 2∇c(xk)
−2∇c(xk)> 2I + 2diag

(
(xk − `)2

)
−2I

2∇c(xk)> −2I 2I + 2diag
(

(xk −u)2
)
+

ε

6M2
Lag
I.

The smoothness of the objective f(x) and the constraints c(x) show that

‖qk+1 − qk‖2 ≤ 2 (κ∇cM∇f +M∇cκ∇f + 2κ∇f )‖xk+1 −xk‖2
≤ 2 (κ∇cM∇f +M∇cκ∇f + 2κ∇f )M`,uαk,

(B.16)

and

‖Qk+1 −Qk‖2 ≤ 4 (M∇cκ∇c + 2κ∇c + 2M`,u)‖xk+1 −xk‖2
≤ 4 (M∇cκ∇c + 2κ∇c + 2M`,u)M`,uαk.

(B.17)
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Then∣∣∣F̃ (λ∗∗k+1,µ
∗∗
1,k+1,µ

∗∗
2,k+1;xk+1)− F̃ (λ∗∗k ,µ

∗∗
1,k,µ

∗∗
2,k;xk)

∣∣∣
≤
∣∣∣∣q>k+1wk+1 +

1

2
w>k+1Qk+1wk+1 − q>k wk −

1

2
w>k Qkwk

∣∣∣∣+ ∣∣∣‖∇f(xk+1)‖22 − ‖∇f(xk)‖22
∣∣∣

≤
∣∣∣∣q>k+1wk+1 +

1

2
w>k+1Qk+1wk+1 − q>k wk+1 −

1

2
w>k+1Qkwk+1

∣∣∣∣
−
∣∣∣∣q>k wk+1 +

1

2
w>k+1Qkwk+1 − q>k wk −

1

2
w>k Qkwk

∣∣∣∣+ ∣∣∣‖∇f(xk+1)‖22 − ‖∇f(xk)‖22
∣∣∣

≤‖wk+1‖2 ‖qk+1 − qk‖2 +
1

2
‖wk+1‖22 ‖Qk+1 −Qk‖2

+ ‖qk‖2 ‖wk+1 −wk‖2 +
1

2
‖wk+1‖2 ‖Qk‖2 ‖wk+1 −wk‖2

+
1

2
‖wk‖2 ‖Qk‖2 ‖wk+1 −wk‖2 + ‖∇f(xk+1)−∇f(xk)‖2 (‖∇f(xk+1)‖2 + ‖∇f(xk)‖2) .

Using Lemma 23, Equations (B.15), (B.16) and (B.17), and Qk � ε
6M2

Lag
I , we have

‖wk+1 −wk‖2 = O
(
αk

ε3/2

)
, where we omit some universal and uncritical constants. Com-

bining it with Equations (B.15), (B.16) and (B.17), we have∣∣∣F̃ (λ∗∗k+1,µ
∗∗
1,k+1,µ

∗∗
2,k+1;xk+1)− F̃ (λ∗∗k ,µ

∗∗
1,k,µ

∗∗
2,k;xk)

∣∣∣≤MF
αk
ε2
,

for a universal constant MF > 0, where the constant is independent of αk, k and ε.
Therefore, it follows from the above inequalities and our construction of the sequences

{mi} and {ni} that
1

2
ε≤ F̃ (λ∗mi

,µ∗1,mi
,µ∗2,mi

;xmi
)− F̃ (λ∗ni

,µ∗1,ni
,µ∗2,ni

;xni
)

≤
ni−1∑
k=mi

∣∣∣F̃ (λ∗k,µ
∗
1,k,µ

∗
2,k;xk)− F̃ (λ∗k+1,µ

∗
1,k,µ

∗
2,k;xk)

∣∣∣
≤

ni−1∑
k=mi

MF
αk
ε2
.

(B.18)

Summing up both two side from i= 1 to∞, we have

∞=

∞∑
i=1

1

2MF
ε3 ≤

∞∑
i=1

ni−1∑
k=mi

αk.

However, ‖pk‖2 ≥
√

ε
κ2+MLag

for mi ≤ k ≤ ni − 1, which further implies that

∞∑
i=1

ni−1∑
k=mi

αk ≤
κ2 +MLag

ε

∞∑
i=1

ni−1∑
k=mi

αk ‖pk‖22 ≤
κ2 +MLag

ε

∞∑
k=K̄

αk ‖pk‖22 <∞.

It is a contradiction. Therefore, we complete the proof that limk→∞F (λ∗k,µ
∗
1,k,µ

∗
2,k;xk) =

0.

LEMMA 25. Under assumptions in Theorem 3, we have

lim
k→∞

c(xk) = 0, almost surely.
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PROOF. The proof scheme is similar. For completeness, we provide the details here. Sup-
pose that lim supk→∞ ‖c(xk)‖2 = 0 but lim infk→∞ ‖c(xk)‖2 = 0. Then we can find a suf-
ficiently small number ε > 0 and two infinite sequences {mi} and {ni} with K̄ ≤mi < ni,
such that

‖c(xmi
)‖2 > 2ε, ‖c(xni

)‖2 < ε,

and

‖c(xk)‖2 ≥ ε, for mi ≤ k < ni.

It follows from the definition of the sequence that

ε≤ ‖c(xmi
)‖2 − ‖c(xni

)‖2

≤
ni−1∑
k=mi

‖c(xk)‖2 − ‖c(xk+1)‖2

≤
ni−1∑
k=mi

‖c(xk)− c(xk+1)‖2

≤ κcM`,u

ni−1∑
k=mi

αk, for all i ∈N.

Multiplying both two sides by ε and by the fact that ‖c(xk)‖2 ≥ ε, formi ≤ k < ni, we have

ε2 ≤ κcM`,u

ni−1∑
k=mi

αk ‖c(xk)‖2 , for all i ∈N,

which implies that∞≤
∑∞

i=1

∑ni−1
k=mi

αk ‖c(xk)‖2 ≤
∑∞

k=K̄ αk ‖c(xk)‖2 <∞. It is a con-
tradiction.

Combining with Lemmas 24 and 25, we finish the proof for Theorem 3.
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APPENDIX C: PROOF FOR THEOREM 4

C.1. Proof for Lemma 3. We proceed by prove each of the four conclusions in turn.

C.1.1. Proof for Conclusion 1. Note that

pk ∈ arg min
p∈Ωk

∇f(xk)
>p+

1

2
p>Bkp,

where Ωk = {p : c(xk) +∇c(xk)>p= 0} ∩ {p : `≤ xk + p≤ u}, and let

p∗ ∈ arg min
p∈Ω∗

∇f(x∗)>p+
1

2
p>Bkp,

and

p∗k ∈ arg min
p∈Ω∗

∇f(xk)
>p+

1

2
p>Bkp,

where Ω∗ = {p : c(x∗) +∇c(x∗)>p = 0} ∩ {p : ` ≤ x∗ + p ≤ u}. Lemma 23 shows that
‖p∗k − p∗‖2 ≤C ‖xk −x

∗‖2 for some C > 0, since both p∗k and p∗ are bounded by M`,u. In
the next part, for simplicity, we use the same notation C to denote some universal constants.
We slightly rewrite the formulation for pk and p∗k that

p̂k ∈ arg min
p∈Ω̂k

1

2
‖p‖2Bk

,

and

p̂∗k ∈ arg min
p∈Ω̂∗

1

2
‖p‖2Bk

,

where Ω̂k =
{
p+B−1

k ∇f(xk) : p ∈Ωk

}
and Ω̂∗ =

{
p+B−1

k ∇f(xk) : p ∈Ω∗
}

. Then
‖pk − p∗k‖2 = ‖p̂k − p̂∗k‖2. By Proposition 3.1 in [21] and results in [37], there exists
p̂∗′ ∈ Ω̂∗ and p̂′k ∈ Ω̂k, such that ‖p̂∗′ − p̂k‖Bk

≤ C ‖xk −x∗‖2 and ‖p̂′k − p̂∗k‖Bk
≤

C ‖xk −x∗‖2 for some C > 0, then

‖p̂∗k‖Bk
≤
∥∥p̂∗′∥∥

Bk
≤ ‖p̂k‖Bk

+C ‖xk −x∗‖2 ,
and

‖p̂k‖Bk
≤
∥∥p̂′k∥∥Bk

≤ ‖p̂∗k‖Bk
+C ‖xk −x∗‖2 .

Equipped with the above inequalities and the optimality condition that 〈p̂∗k, p̂∗′ − p̂∗k〉 ≥ 0,
we have ∥∥p̂∗′∥∥2

Bk
=
∥∥p̂∗k + p̂∗′ − p̂∗k

∥∥2

Bk

= ‖p̂∗k‖
2
Bk

+ 2
〈
p̂∗k, p̂

∗′ − p̂∗k
〉

+
∥∥p̂∗′ − p̂∗k∥∥2

Bk

≥ ‖p̂∗k‖
2
Bk

+
∥∥p̂∗′ − p̂∗k∥∥2

Bk
.

Therefore,∥∥p̂∗′ − p̂∗k∥∥2

Bk
≤
∥∥p̂∗′∥∥2

Bk
− ‖p̂∗k‖

2
Bk

=
∥∥p̂∗′ − p̂k + p̂k

∥∥2

Bk
− ‖p̂∗k‖

2
Bk

≤
∥∥p̂∗′ − p̂k∥∥2

Bk
+ 2

∥∥p̂∗′ − p̂k∥∥Bk
‖p̂k‖Bk

+ ‖p̂k‖2Bk
− ‖p̂∗k‖

2
Bk

≤
∥∥p̂∗′ − p̂k∥∥2

Bk
+ 2

∥∥p̂∗′ − p̂k∥∥Bk
‖p̂k‖Bk

+
∣∣‖p̂k‖Bk

− ‖p̂∗k‖Bk

∣∣ (‖p̂k‖Bk
+ ‖p̂∗k‖Bk

)
≤C ‖xk −x∗‖2 ,
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for some C > 0. Thus

‖p̂k − p̂∗k‖
2
Bk
≤
∥∥p̂k − p̂∗′ + p̂∗′ − p̂∗k∥∥2

Bk

≤ 2
∥∥p̂k − p̂∗′∥∥2

Bk
+ 2

∥∥p̂∗′ − p̂∗k∥∥2

Bk

≤C ‖xk −x∗‖2 ,

(C.1)

for someC > 0. The facts that ‖pk − p∗k‖2 = ‖p̂k − p̂∗k‖2 ≤C
√
‖xk −x∗‖2 and ‖p∗k − p∗‖2 ≤

C ‖xk −x∗‖2 show that ‖pk − p∗‖2 ≤ C
√
‖xk −x∗‖2 for some C > 0. Note that p∗ = 0

for any positive-definite matrixBk since x∗ is a local solution of Problem (1.1). We complete
the proof as xk→ x∗ in Assumption 5.

C.1.2. Proof for Conclusion 2. We revisit the definition of ḡk and have that

ḡk −∇f(xk) = βk (gk −∇f(xk)) + (1− βk) (ḡk−1 −∇f(xk−1))

+ (1− βk) (∇f(xk−1)−∇f(xk))

= βk (gk −∇f(xk)) + (1− βk){βk−1 (gk−1 −∇f(xk−1)) + (1− βk−1) (ḡk−2 −∇f(xk−2))

+ (1− βk−1) (∇f(xk−2)−∇f(xk−1))}+ (1− βk) (∇f(xk−1)−∇f(xk))

= · · ·

=

k∑
i=0

 k∏
j=i+1

(1− βj)

βi (gi −∇f(xi))

+

k∑
i=1

 k∏
j=i

(1− βj)

 (∇f(xi−1)−∇f(xi))

:=W1,k +W2,k.

Here,

‖W2,k‖2 ≤
k∑
i=1

 k∏
j=i

(1− βj)

αi−1M`,u,

then W2,k → 0 as k→∞ since limk→∞αi−1/βi = 0. We apply Theorem 4.4 in [34] with

γ = 2, φ(k) = 1, α=−1/2, andXk,h =
(∏k

h′=h+1(1− βh′)
)
βh/(
√
βkk

1/2+ε) (gh −∇f(xh))

for any sufficiently small ε > 0, as well as the Borel-Cantelli Lemma that the martingale dif-
ference array satisfies ‖W1,k‖2→ 0, almost surely.

C.1.3. Proof for Condition 3. We will show that there exists a sufficiently small ε∗ > 0
such that if ‖ḡk −∇f(xk)‖2 ≤ ε∗, I(xk + p̄k) = I(xk + pk) and J (xk + p̄k) = J (xk +
pk) hold. The almost sure convergence of ḡk − ∇f(xk) implies that ‖ḡk −∇f(xk)‖2 ≤
ε∗ holds for some sufficiently large k ≥K∗. Let (λsub

k ,µsub
1,k,µ

sub
2,k) and (λ̄sub

k , µ̄sub
1,k, µ̄

sub
2,k) be

the Lagrangian multipliers of the relaxed SQP subproblem with the full gradient ∇f(xk)
and the stochastic averaged gradient ḡk, respectively. Let (λ∗,µ∗1,µ

∗
2) be the Lagrangian

multiplier for Problem (1.1) at x∗ and denote ε = min{{(µ∗1)i : i ∈ I(x∗)} ∪ {(µ∗2)i : i ∈
J (x∗)}}> 0 due to the strictly complementary slackness condition. Since pk is the optimal
solution of the strongly convex quadratic SQP subproblem, the KKT condition shows that
∇f(xk) +Bkpk + ∇c(xk)λsub

k − µsub
1,k + µsub

2,k = 0. Taking k→∞ (xk → x∗ and pk →
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0), it follows from the LICQ at x∗ that (λsub
k ,µsub

1,k,µ
sub
2,k)→ (λ∗,µ∗1,µ

∗
2). So there exists

sufficiently large K∗ > 0 such that (µsub
1,k)i >

3
4ε for all i ∈ I(x∗) and (µsub

2,k)i >
3
4ε for all

i ∈ J (x∗). Therefore, xk +pk has the same active and inactive set as x∗, i.e., I(xk +pk) =
I(x∗) and J (xk +pk) = J (x∗). Denote ε′ = max{(x∗− `)i, (u−x∗)i : i /∈ I(x∗) and i /∈
J (x∗)}. When K∗ is sufficiently large, we have max{(xk + pk − `)i, (u− xk − pk)i : i /∈
I(x∗) and i /∈ J (x∗)} ≥ 3

4ε
′. Lemma 23 shows that ‖p̄k − pk‖2 ≤ (1 +M`,u)κ−1

1 ε∗ under
the assumption that ‖ḡk − ∇f(xk)‖2 ≤ ε∗ when k ≥ K∗. If ε∗ is sufficiently small such
that (1 +M`,u)κ−1

1 ε∗ ≤ 1
4ε
′, then max{(xk + p̄k − `)i, (u− xk − p̄k)i : i /∈ I(x∗) and i /∈

J (x∗)} ≥ 1
2ε
′.

The LICQ condition implies that columns of [∇c(x∗), [−I]I(x∗), [I]J (x∗)] are lin-
early independent and [∇c(x∗), [−I]I(x∗), [I]J (x∗)]

>[∇c(x∗), [−I]I(x∗), [I]J (x∗)] � κ0I
for some κ0 > 0. By the smoothness of c(x), there exists sufficiently large K∗ such that
[∇c(xk), [−I]I(x∗), [I]J (x∗)]

>[∇c(xk), [−I]I(x∗), [I]J (x∗)] � 1
2κ0I for all k ≥ K∗. The

KKT condition of the SQP subproblem at xk with ḡk shows that ḡk+Bkp̄k+∇c(xk)λ̄sub
k −

µ̄sub
1,k + µ̄sub

2,k = 0. Since max{(xk + p̄k − `)i, (u− xk − p̄k)i : i /∈ I(x∗) and i /∈ J (x∗)} ≥
1
2ε
′, (µ̄sub

1,k)i = (µ̄sub
2,k)i = 0 for i /∈ I(x∗) and i /∈ J (x∗). Therefore,∥∥∇c(xk) (λ̄sub

k −λsub
k

)
−
(
µ̄sub

1,k −µsub
1,k

)
+
(
µ̄sub

2,k −µsub
2,k

)∥∥
2

≤‖ḡk −∇f(xk)‖2 + ‖Bkp̄k −Bkpk‖2
≤
(
1 + (1 +M`,u)κ−1

1 κ2

)
ε∗,

and ∥∥∥∥∥∥∥∥


λ̄sub
k −λsub

k[
µ̄sub

1,k −µsub
1,k

]
I(x∗)[

µ̄sub
2,k −µsub

2,k

]
J (x∗)


∥∥∥∥∥∥∥∥

2

≤ 2κ−1
0 (M∇c + 2)

(
1 + (1 +M`,u)κ−1

1 κ2

)
ε∗.

We let ε∗ to be small enough such that the right-hand side of the above inequality is less than
1
4ε, i.e., 2κ−1

0 (M∇c + 2)
(
1 + (1 +M`,u)κ−1

1 κ2

)
ε∗ ≤ 1

4ε. Then, together with (µsub
1,k)i >

3
4ε

for i ∈ I(x∗) and (µsub
2,k)i >

3
4ε for i ∈ J (x∗), we have (µ̄sub

1,k)i >
1
2ε for i ∈ I(x∗) and

(µ̄sub
2,k)i >

1
2ε for i ∈ J (x∗). It implies that both xk + pk and xk + p̄k can correctly identify

the active and inactive sets of constraints at x∗. Therefore, I(xk+p̄k) = I(xk+pk) = I(x∗)
and J (xk + p̄k) = J (xk + pk) = J (x∗).

C.1.4. Proof for Conclusion 4. Equipped with the fact that ḡk − ∇f(xk) → 0 al-
most surely, the condition ‖ḡk − ∇f(xk)‖2 ≤ ε∗ always holds when k is sufficiently
large. By the proof in the previous section, we know that (λ̄sub

k , [µ̄sub
1,k]I(x∗), [µ̄

sub
2,k]J (x∗))→

(λ∗, [µ∗1]I(x∗), [µ
∗
2]J (x∗)). The update scheme for dual variables in Step 6 shows the follow-

ing recursion

λk+1 =

k∏
j=K∗

(1− αj)λK∗ +

k∑
i=K∗

k∏
j=i+1

(1− αj)αiλ̄sub
i ,

thenλk→ λ∗ almost surely. Similar convergence results hold for ([µ1,k]I(x∗), [µ2,k]J (x∗))→
([µ∗1]I(x∗), [µ

∗
2]J (x∗)) and for dual variables indexed on inactive sets I−(x∗) and J −(x∗).
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C.2. Proof for Lemma 4. The definition of the averaged Hessian matrix Bk shows that

‖Bk −B∗‖2 ≤

∥∥∥∥∥1

k

k∑
i=1

∇2f(xi; ζi)−∇2f(xi)

∥∥∥∥∥
2

+
1

k

k∑
i=1

∥∥∥∥∥∥∇2f(xi) +

r∑
j=1

(λi)j∇
2cj(xi)−∇2f(x∗)−

r∑
j=1

(λ∗)j∇
2cj(x

∗)

∥∥∥∥∥∥
2

+ ‖∆k‖2

≤

∥∥∥∥∥1

k

k∑
i=1

∇2f(xi; ζi)−∇2f(xi)

∥∥∥∥∥
2

+
Υ∇2L
k

k∑
i=1

∥∥∥∥(xi −x∗λi −λ∗
)∥∥∥∥

2

+ ‖∆k‖2 ,

(C.2)

for some Υ∇2L > 0 due to the compactness of iterates and smoothness of ∇2f(x) and
∇2c(x). The first term converges to 0 almost surely by the strong law of large number, while
the second term converges to 0 almost surely by the Stolz-Cesaro theorem. Since ∆k acts
as a regularization term for the positive definiteness of Bk and B∗ is positive definite, we
deduce that ∆k = 0 when k is sufficiently large. Moreover,

‖Hk −H∗‖2 ≤ ‖Bk −B∗‖2 + κ∇c ‖xk −x∗‖2
implies that Hk→H∗ almost surely.

C.3. Proof for Theorem 4.

LEMMA 26. When Hk is sufficiently close to H∗, there exists a constant ΥL > 0, such
that

(C.3)
∥∥∥H−1

k − (H∗)−1
∥∥∥

2
≤ΥL ‖Hk −H∗‖2 .

Then ∥∥H−1
k

∥∥
2
,
∥∥∥(H∗)−1

∥∥∥
2
≤ΥH ,

for some ΥH > 0. Moreover, H−1
k → (H∗)−1 almost surely.

PROOF. First, we build the relationship between H−1
k − (H∗)−1 and Hk −H∗. Note

that

0 = (H∗)−1H∗ −H−1
k Hk

= (H∗)−1H∗ − (H∗)−1Hk + (H∗)−1Hk −H−1
k Hk

= (H∗)−1 (H∗ −Hk) +
(

(H∗)−1 −H−1
k

)
Hk,

(C.4)

then

(C.5)
∥∥∥H−1

k − (H∗)−1
∥∥∥

2
≤

∥∥∥(H∗)−1
∥∥∥

2
‖Hk −H∗‖2

λmin (Hk)
≤ΥL ‖Hk −H∗‖2 ,

for some ΥL > 0, since we can assume that λmin (Hk) >
1
2λmin (H∗) without the loss of

generality, when Hk is sufficiently close to H∗. The boundedness of
∥∥H−1

k

∥∥
2

is a direct
result of Equation (C.3). The almost sure convergence ofH−1

k → (H∗)−1 is straightforward
from Equation (C.3) and Lemma 4.
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LEMMA 27. Algorithm 3 generates a sequence {(xk,λk,µ1,k,µ2,k)} satisfying
xk+1 −x∗
λk+1 −λ∗

[µ1,k+1 −µ∗1]I(x∗)

[µ2,k+1 −µ∗2]J (x∗)

=Q1,k +Q2,k +Q3,k,

and (
[µ1,k+1 −µ∗1]I−(x∗)

[µ2,k+1 −µ∗2]J−(x∗)

)
=

k∏
i=K∗

(1− αmin
i )

(
[µ1,K∗ −µ∗1]I−(x∗)

[µ2,K∗ −µ∗2]J−(x∗)

)
,

where

Q1,k =

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i φi,

Q2,k =

k∑
i=K∗

 k∏
j=i+1

(1− αmin
j )

 (αi − αmin
i )


p̄k

∆λk
[∆µ1,k]I(x∗)

[∆µ2,k]J (x∗)

 ,

Q3,k =

k∏
i=K∗

(1− αmin
i )


xK∗ −x∗
λK∗ −λ∗

[µ1,K∗ −µ∗1]I(x∗)

[µ2,K∗ −µ∗2]J (x∗)

+

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i δi,

and

φi =−H−1
i


ḡi −∇f(xi)

0
0
0

 ,

δi =− (H∗)−1ψi −
(
H−1
i − (H∗)−1

)
∇f(xi) +∇c(xi)λi −µ1,i +µ2,i

c(xi)
[`−xi]I(x∗)

[xi −u]J (x∗)

 ,

ψi =


∇f(xi) +∇c(xi)λi −µ1,i +µ2,i

c(xi)
[`−xi]I(x∗)

[xi −u]J (x∗)

−H∗


xi −x∗
λi −λ∗

[µ1,i −µ∗1]I(x∗)

[µ2,i −µ∗2]J (x∗)

 .
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PROOF. By the update scheme of Algorithm 3, we have
xk+1 −x∗
λk+1 −λ∗

[µ1,k+1 −µ∗1]I(x∗)

[µ2,k+1 −µ∗2]J (x∗)

=


xk −x∗
λk −λ∗

[µ1,k −µ∗1]I(x∗)

[µ2,k −µ∗2]J (x∗)

+ (αk − αmin
k + αmin

k )


p̄k

∆λk
[∆µ1,k]I(x∗)

[∆µ2,k]J (x∗)



=


xk −x∗
λk −λ∗

[µ1,k −µ∗1]I(x∗)

[µ2,k −µ∗2]J (x∗)

+ (αk − αmin
k )


p̄k

∆λk
[∆µ1,k]I(x∗)

[∆µ2,k]J (x∗)

− αmin
k H−1

k


∇f(xk) +∇c(xk)λk −µ1,k +µ2,k

c(xk)
[`−xk]I(x∗)

[xk −u]J (x∗)


+ αmin

k φk

=


xk −x∗
λk −λ∗

[µ1,k −µ∗1]I(x∗)

[µ2,k −µ∗2]J (x∗)

+ (αk − αmin
k )


p̄k

∆λk
[∆µ1,k]I(x∗)

[∆µ2,k]J (x∗)

+ αmin
k φk

− αmin
k

(
H−1
k − (H∗)−1

)
∇f(xk) +∇c(xk)λk −µ1,k +µ2,k

c(xk)
[`−xk]I(x∗)

[xk −u]J (x∗)



− αmin
k (H∗)−1


∇f(xk) +∇c(xk)λk −µ1,k +µ2,k

c(xk)
[`−xk]I(x∗)

[xk −u]J (x∗)



=(1− αmin
k )


xk −x∗
λk −λ∗

[µ1,k −µ∗1]I(x∗)

[µ2,k −µ∗2]J (x∗)

+ (αk − αmin
k )


p̄k

∆λk
[∆µ1,k]I(x∗)

[∆µ2,k]J (x∗)

+ αmin
k φk

− αmin
k

(
H−1
k − (H∗)−1

)
∇f(xk) +∇c(xk)λk −µ1,k +µ2,k

c(xk)
[`−xk]I(x∗)

[xk −u]J (x∗)


− αmin

k (H∗)−1ψk.

We then obtain the result by applying the above equation recursively.

LEMMA 28. Under Assumptions 5 and 6, then

‖Q2,k‖2 =O
(
αmin
k

)
.

PROOF. Under the boundedness of the generated iterates and the almost sure convergence
that ‖ḡk −∇f(xk)‖2 ≤ ε∗, we have that the iterates in Equation (4.3) are bounded for all
k ≥K∗, i.e., ∥∥∥∥∥∥∥∥


p̄k

∆λk
[∆µ1,k]I(x∗)

[∆µ2,k]J (x∗)


∥∥∥∥∥∥∥∥

2

≤M∆,
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for some M∆ > 0, due to the LICQ condition. Recall that

Q2,k =

k∑
i=K∗

 k∏
j=i+1

(1− αmin
j )

 (αi − αmin
i )


p̄k

∆λk
[∆µ1,k]I(x∗)

[∆µ2,k]J (x∗)

 ,

which shows that

‖Q2,k‖2 =O
(
αmin
k

)
,

since |αi − αmin
i | ≤ (ι0/ι

2
1)(αmin

k )2 and Lemma 15.

LEMMA 29. Under Assumptions 5 and 6, and suppose that ι1 > b2 if b1 = 1, then

(C.6) E
[
‖Q1,k‖22

]
=O

(
βk + (αmin

k )2/β2
k

)
.

PROOF. By the definition of ḡi −∇f(xi), we have
ḡi −∇f(xi)

0
0
0

=

i∑
h=K∗

(
i∏

h′=h+1

(1− βh′)

)
βh


gh −∇f(xh)

0
0
0



+

i∑
h=K∗

(
i∏

h′=h

(1− βh′)

)
∇f(xh−1)−∇f(xh)

0
0
0


:=W1,i +W2,i.

E
[
‖Q1,k‖22

]
≤Υ2

HE

 k∑
i=K∗

k∏
j=i+1

(
1− αmin

j

)
αmin
i ‖W1,i +W2,i‖2

2
≤Υ2

H

k∑
i=K∗

k∏
j=i+1

(
1− αmin

j

)
αmin
i

k∑
i′=K∗

k∏
j′=i′+1

(
1− αmin

j′
)
αmin
i′ E

[
‖W1,i +W2,i‖2 ‖W1,i′ +W2,i′‖2

]

≤Υ2
H

k∑
i=K∗

k∏
j=i+1

(
1− αmin

j

)
αmin
i

k∑
i′=K∗

k∏
j′=i′+1

(
1− αmin

j′
)
αmin
i′

√
E
[
‖W1,i +W2,i‖22

]√
E
[
‖W1,i′ +W2,i′‖22

]

≤Υ2
H

 k∑
i=K∗

k∏
j=i+1

(
1− αmin

j

)
αmin
i

√
E
[
‖W1,i +W2,i‖22

]2

.

(C.7)

Note that E
[
‖W1,i‖22

]
≤ Mσ

∑i
h=K∗

∏i
h′=h+1 (1− βh′)2 β2

h ≤ 2Mσβi and ‖W2,i‖22 ≤

M2
`,u

(∑i
h=K∗

∏i
h′=h+1 (1− βh′)αh

)2
≤ 2M2

`,uα
2
i /β

2
i = O

(
βi + (αmin

i )2/β2
i

)
, for i suf-

ficiently large, then E
[
‖Q1,k‖22

]
= O

(
βk + (αmin

k )2/β2
k

)
. Here, we require that ι1 > b2 if

b1 = 1, using Lemma 15.
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LEMMA 30. Under Assumptions 5 and 6, and suppose that ι1 > b2 if b1 = 1, then

E
[
‖Q3,k‖22

]
=O

(
βk + (αmin

k )2/β2
k

)
,

and

E


∥∥∥∥∥∥∥∥


xk −x∗
λk −λ∗

[µ1,k −µ∗1]I(x∗)

[µ2,k −µ∗2]J (x∗)


∥∥∥∥∥∥∥∥

2

2

=O
(
βk + (αmin

k )2/β2
k

)
.

PROOF. Recall the definition of Q3,k that

Q3,k =

k∏
i=K∗

(1− αmin
i )


xK∗ −x∗
λK∗ −λ∗

[µ1,K∗ −µ∗1]I(x∗)

[µ2,K∗ −µ∗2]J (x∗)

+

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i δi,

we have the following recursion

(C.8) Q3,k+1 =
(
1− αmin

k+1

)
Q3,k + αmin

k+1δk+1.

Here,

‖δk+1‖2 ≤
∥∥∥(H∗)−1

∥∥∥
2
‖ψk+1‖2 +

∥∥∥H−1
k+1 − (H∗)−1

∥∥∥
2
‖∇Lk+1‖2

≤ κ∇LΥH

∥∥∥∥∥∥∥∥


xk+1 −x∗
λk+1 −λ∗

[µ1,k+1 −µ∗1]I(x∗)

[µ2,k+1 −µ∗2]J (x∗)


∥∥∥∥∥∥∥∥

2

2

+ κ∇LΥL ‖Hk+1 −H∗‖2

∥∥∥∥∥∥∥∥


xk+1 −x∗
λk+1 −λ∗

[µ1,k+1 −µ∗1]I(x∗)

[µ2,k+1 −µ∗2]J (x∗)


∥∥∥∥∥∥∥∥

2

:= εk+1

∥∥∥∥∥∥∥∥


xk+1 −x∗
λk+1 −λ∗

[µ1,k+1 −µ∗1]I(x∗)

[µ2,k+1 −µ∗2]J (x∗)


∥∥∥∥∥∥∥∥

2

≤ εk+1

(
‖Q1,k‖2 + ‖Q2,k‖2 + ‖Q3,k‖2

)
,

where we define

εk := κ∇HΥL

∥∥∥∥∥∥∥∥


xk −x∗
λk −λ∗

[µ1,k −µ∗1]I(x∗)

[µ2,k −µ∗2]J (x∗)


∥∥∥∥∥∥∥∥

2

+ κ∇LΥL ‖Hk −H∗‖2 .

Then, for any a ∈ (0,1) and there exists the corresponding threshold Ka ≥ K∗ such that
εk+1 ≤ a and

‖Q3,k+1‖2 ≤
(
1− (1− a)αmin

k+1

)
‖Q3,k‖2 + aαmin

k+1 ·
(
‖Q1,k‖2 + ‖Q2,k‖2

)
,
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for all k ≥Ka, as εk→ 0 almost surely. We then develop the recursion for ‖Q3,k+1‖2 that

‖Q3,k+1‖2
≤
(
1− (1− a)αmin

k+1

)
‖Q3,k‖2 + aαmin

k+1 ·
(
‖Q1,k‖2 + ‖Q2,k‖2

)
≤
(
1− (1− a)αmin

k+1

) (
1− (1− a)αmin

k

)
‖Q3,k−1‖2

+
(
1− (1− a)αmin

k+1

)
aαmin

k ·
(
‖Q1,k−1‖2 + ‖Q2,k−1‖2

)
+ aαmin

k+1 ·
(
‖Q1,k‖2 + ‖Q2,k‖2

)
≤ · · ·

≤
k+1∏

j=Ka+1

(
1− (1− a)αmin

j

)
‖Q3,Ka

‖2 +

k+1∑
i=Ka+1

 k+1∏
j=i+1

(
1− (1− a)αmin

j

)aαmin
i ·

(
‖Q1,i−1‖2 + ‖Q2,i−1‖2

)
,

(C.9)

and thus

E
[
‖Q3,k‖22

]
≤ 2

 k∏
j=Ka+1

(
1− (1− a)αmin

j

)
‖Q3,Ka

‖2

2

+ 2

k∑
i=Ka+1

 k∏
j=i+1

(
1− (1− a)αmin

j

)aαmin
i

·
k∑

i′=Ka+1

 k∏
j′=i′+1

(
1− (1− a)αmin

j′
)aαmin

i′ ·E
[(
‖Q1,i−1‖2 + ‖Q2,i−1‖2

) (
‖Q1,i′−1‖2 + ‖Q2,i′−1‖2

)]

≤ 2

 k∏
j=Ka+1

(
1− (1− a)αmin

j

)
‖Q3,Ka

‖2

2

+ 2

k∑
i=Ka+1

 k∏
j=i+1

(
1− (1− a)αmin

j

)aαmin
i

·
k∑

i′=Ka+1

 k∏
j′=i′+1

(
1− (1− a)αmin

j′
)aαmin

i′ ·
√
E
[(
‖Q1,i−1‖2 + ‖Q2,i−1‖2

)2]√E
[(
‖Q1,i′−1‖2 + ‖Q2,i′−1‖2

)2]

≤ 2

 k∏
j=Ka+1

(
1− (1− a)αmin

j

)
‖Q3,Ka

‖2

2

+ 2

 k∑
i=Ka+1

 k∏
j=i+1

(
1− (1− a)αmin

j

)aαmin
i

√
E
[(
‖Q1,i−1‖2 + ‖Q2,i−1‖2

)2]2

.

Here, the fact that E
[(
‖Q1,i‖2 + ‖Q2,i‖2

)2]≤ 2E
[
‖Q1,i‖22 + ‖Q2,i‖22

]
=O

(
βi + (αmin

i )2/β2
i

)
implies E

[
‖Q3,k‖22

]
=O

(
βk + (αmin

k )2/β2
k

)
. The second relation comes from the fact that

E
[
‖Q1,k‖22

]
, E
[
‖Q2,k‖22

]
and E

[
‖Q3,k‖22

]
are at least of the order O

(
βk + (αmin

k )2/β2
k

)
.

Here, we require that ι1 > b2
2(1−a) if b1 = 1. Since a ∈ (0,1) can be arbitrarily close to 0, we

know b2
2(1−a) ≤ b2 < 1 if a ≤ 1

2 , and thus the condition is automatically satisfied for a ≤ 1
2

and ι1 > b2.



AN OPTIMAL METHOD FOR CONSTRAINED STOCHASTIC OPTIMIZATION 59

LEMMA 31. Under Assumptions 5 and 6, and suppose that ι1 > b2 if b1 = 1, then we
have

(C.10) E
[
‖Hk −H∗‖22

]
=O

(
βk + (αmin

k )2/β2
k

)
and

(C.11) E
[∥∥∥H−1

k − (H∗)−1
∥∥∥2

2

]
=O

(
βk + (αmin

k )2/β2
k

)
.

PROOF. We revisit the result in Lemma 26 that
∥∥∥H−1

k − (H∗)−1
∥∥∥

2
≤ΥL ‖Hk −H∗‖2.

Then, in the left part of the proof, we mainly show the first equality.

‖Hk −H∗‖2 ≤

∥∥∥∥∥ 1

k+ 1

k∑
i=0

(
∇2f(xi; ζi)−∇2f(xi)

)∥∥∥∥∥
2

+
κ∇2f

k+ 1

k∑
i=0

∥∥∥∥∥∥∥∥


xi −x∗
λi −λ∗

[µ1,i −µ∗1]I(x∗)

[µ2,i −µ∗2]J (x∗)


∥∥∥∥∥∥∥∥

2

+ κ∇c

∥∥∥∥∥∥∥∥


xk −x∗
λk −λ∗

[µ1,k −µ∗1]I(x∗)

[µ2,k −µ∗2]J (x∗)


∥∥∥∥∥∥∥∥

2

.

(C.12)

Note that ∆k is the modification to the positive-definiteness of Bk. If ∆k is the matrix with
the smallest `2-norm such thatBk is positive definite, then ‖∆k‖2 ≤

∥∥Bk −∇2f(x∗)−
∑r

i=1(λ∗)i∇2ci(x
∗)
∥∥

2
.

Here, the strong law of large number shows that
(C.13)∥∥∥∥∥ 1

k+ 1

k∑
i=0

(
∇2f(xi; ζi)−∇2f(xi)

)∥∥∥∥∥
2

= o

√(logk)1+ν

k

=O
(√

βk + αmin
k /βk

)
, almost surely,

for any ν > 0. It further shows thatHk (resp.Bk) converges toH∗ (resp.B∗) almost surely.
Then

E
[
‖Hk −H∗‖22

]
≤ 3E

∥∥∥∥∥ 1

k+ 1

k∑
i=0

(
∇2f(xi; ζi)−∇2f(xi)

)∥∥∥∥∥
2

2



+
3κ2
∇2f

k+ 1

k∑
i=0

E


∥∥∥∥∥∥∥∥


xi −x∗
λi −λ∗

[µ1,i −µ∗1]I(x∗)

[µ2,i −µ∗2]J (x∗)


∥∥∥∥∥∥∥∥

2

2

+ 3κ2
∇cE


∥∥∥∥∥∥∥∥


xk −x∗
λk −λ∗

[µ1,k −µ∗1]I(x∗)

[µ2,k −µ∗2]J (x∗)


∥∥∥∥∥∥∥∥

2

2


=O

(
βk + (αmin

k )2/β2
k

)
.

LEMMA 32. Under Assumptions 5 and 6, and suppose that ι1 > b2 if b1 = 1, then

E
[
‖W2,k‖22

]
= o

(
αmin
k

)
.
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PROOF. For simplicity, we denote

vk =


−ḡk −λk∇c(xk) +µ1,k −µ2,k

−c(xk)
[xk − `]I(x∗)

[u−xk]J (x∗)

 , and v∗ =


−∇f(x∗)−λ∗∇c(x∗) +µ∗1 −µ∗2

−c(x∗)
[x∗ − `]I(x∗)

[u−x∗]J (x∗)

= 0.

Then, there exist some κv > 0 such that

‖vk − v∗‖2 ≤ ‖ḡk −∇f(xk)‖2 + κv

∥∥∥∥∥∥∥∥


xk −x∗
λk −λ∗

[µ1,k −µ∗1]I(x∗)

[µ2,k −µ∗2]J (x∗)


∥∥∥∥∥∥∥∥

2

.

We further have

E
[
‖p̄k‖22

]
= E

[∥∥H−1
k vk

∥∥2

2

]
= E

[∥∥H−1
k vk −H−1

k v∗
∥∥2

2

]
≤Υ2

HE
[
‖vk − v∗‖22

]

≤ 2Υ2
H

E
[
‖ḡk −∇f(xk)‖22

]
+ κ2

vE


∥∥∥∥∥∥∥∥


xk −x∗
λk −λ∗

[µ1,k −µ∗1]I(x∗)

[µ2,k −µ∗2]J (x∗)


∥∥∥∥∥∥∥∥

2

2




=O (βk) .

(C.14)

Then

E
[
‖W2,k‖22

]
≤

(
k∑

h=K∗

k∏
h′=h+1

(1− βh′)αh−1

√
E
[
‖p̄h−1‖22

])2

=O
(
(αmin

k )2/βk
)

= o
(
αmin
k

)
.

After putting back N times, we have

E
[
‖W1,k‖22

]
=O (βk) ,

and

E
[
‖W2,k‖22

]
=O

(
βk

N∑
i=1

(αk/βk)
2i + (αk/βk)

2(N+1)

)
.

Observe that βk
∑N

i=1

(
αmin
k /βk

)2i
= o

(
αmin
k

)
and N can be any arbitrarily large integer,

then

E
[
‖W2,k‖22

]
= o

(
αmin
k

)
,

under the condition that b2 < b1.

LEMMA 33. Denote

E∗1,k =

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i

(
(H∗)−1 −H−1

i

)
ḡi −∇f(xi)

0
0
0

 .
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Under Assumptions 5 and 6, and suppose that ι1 > b2 if b1 = 1, then

(C.15) E
[∥∥E∗1,k∥∥2

]
=O (βk) ,

and

(C.16) E
[
‖Q3,k‖2

]
=O (βk) .

PROOF.

E
[∥∥E∗1,k∥∥2

]
≤

k∑
i=K∗

k∏
j=i+1

(
1− αmin

j

)
αmin
i

√
E
[∥∥∥H−1

k − (H∗)−1
∥∥∥2

2

]√
E
[
‖W1,i +W2,i‖22

]
=O (βk) .

E
[
‖Q3,k‖2

]
=

k∏
j=Ka+1

(
1− (1− a)αmin

j

)
‖Q3,Ka

‖2

+

k∑
i=Ka+1

 k∏
j=i+1

(
1− (1− a)αmin

j

)αmin
i ·

√
E
[
ε2
i

]√
E
[(
‖Q1,i−1‖2 + ‖Q2,i−1‖2

)2]
.

Here,

E
[
ε2
i

]
=O

(
E
[
‖Q1,i‖22 + ‖Q2,i‖22 + ‖Q3,i‖22 + ‖Hi+1 −H∗‖22

])
=O (βi)

and

E
[(
‖Q1,i‖2 + ‖Q2,i‖2

)2]
=O (βi)

complete the first part of the proof.

LEMMA 34. Let

Q1,k =Q∗1,k + E∗1,k,

where

Q∗1,k =

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i (−H∗)−1


ḡi −∇f(xi)

0
0
0


:=

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i (−H∗)−1 (W1,i +W2,i) .

and

E∗1,k =

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i

(
(−Hi)

−1 − (−H∗)−1
)

ḡi −∇f(xi)
0
0
0

 .

Under Assumptions 5 and 6, and suppose that ι1 > b2 if b1 = 1, then

(C.17)
1√
αmin
k

Q∗1,k→N (0,ΘΩ∗) .
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PROOF. Let

Q∗∗1,k :=

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i (−H∗)−1W1,i

=

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i

i∑
h=K∗

(
i∏

h′=h+1

(1− βh′)

)
βh (−H∗)−1


gh −∇f(xh)

0
0
0



=

k∑
h=K∗

k∑
i=h

k∏
j=i+1

(
1− αmin

j

)
αmin
i

i∏
h′=h+1

(1− βh′)βh (−H∗)−1


gh −∇f(xh)

0
0
0



:=

k∑
h=K∗

ah,k (−H∗)−1


gh −∇f(xh)

0
0
0

 :=

k∑
h=K∗

sh,k,

(C.18)

where ah,k =
∑k

i=h

∏k
j=i+1

(
1− αmin

j

)
αmin
i

∏i
h′=h+1(1−βh′)βh and sh,k are independent

for different h. The asymptotic normality can be implied by the central limit theorem for the
martingale difference array. Before that, we first verify the corresponding conditions. We first
denote

φ∗h = (−H∗)−1


gh −∇f(xh)

0
0
0

 ,

and note that E
[
φ∗hφ

∗>
h |Fh−1

]
→ Ω∗ as h→∞ almost surely, since the smoothness of

f(x, ξ) shows that

Λi := E
[
gig
>
i −∇f(xi)∇f(xi)

>|Fi−1

]
−E

[
∇f(x∗; ξ)∇f(x∗; ξ)> −∇f(x∗)∇f(x∗)>

]
=E
[
∇f(xi; ξ)∇f(xi; ξ)

> −∇f(x∗; ξ)∇f(xi; ξ)
>|Fi−1

]
+E

[
∇f(x∗; ξ)∇f(xi; ξ)

> −∇f(x∗; ξ)∇f(x∗; ξ)>|Fi−1

]
+∇f(xi)∇f(xi)

> −∇f(x∗)∇f(xi)
> +∇f(x∗)∇f(xi)

> −∇f(x∗)∇f(x∗)>

≤κ∇f ‖xi −x∗‖2

(√
E
[
‖∇f(xi; ξ)‖22 |Fi−1

]
+

√
E
[
‖∇f(x∗; ξ)‖22

]
+ ‖∇f(xi)‖2 + ‖∇f(x∗)‖2

)
≤4κ∇fM∇f ‖xi −x∗‖2→ 0, as i→∞.
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Then,
k∑

h=K∗

E
[
a2
h,kφ

∗
hφ
∗>
h |Fh−1

]

=

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i ·
k∑

i′=K∗

k∏
j′=i′+1

(1− αmin
j′ )αmin

i′

min{i,i′}∑
h=K∗

(
i∏

h′=h+1

(1− βh′)

)(
i′∏

h′=h+1

(1− βh′)

)
β2
h

·E
[
φ∗hφ

∗>
h |Fh−1

]
=2

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i ·
i∑

i′=K∗

k∏
j′=i′+1

(1− αmin
j′ )αmin

i′

i′∑
h=K∗

(
i∏

h′=h+1

(1− βh′)

)(
i′∏

h′=h+1

(1− βh′)

)
β2
h

·E
[
φ∗hφ

∗>
h |Fh−1

]
−

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )2(αmin

i )2
i∑

h=K∗

(
i∏

h′=h+1

(1− βh′)

)2

β2
hE
[
φ∗hφ

∗>
h |Fh−1

]

=2

k∑
i=K∗

k∏
j=i+1

(
1− αmin

j

)2
αmin
i ·

i∑
i′=K∗

i∏
j′=i′+1

(
1− αmin

j′
)

(1− βj′)αmin
i′

i′∑
h=K∗

(
i′∏

h′=h+1

(1− βh′)

)2

β2
h

·E
[
φ∗hφ

∗>
h |Fh−1

]
−

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )2(αmin

i )2
i∑

h=K∗

(
i∏

h′=h+1

(1− βh′)

)2

β2
hE
[
φ∗hφ

∗>
h |Fh−1

]
.

Note that

lim
i′→∞

β−1
i

i′∑
h=K∗

(
i′∏

h′=h+1

(1− βh′)

)2

β2
hE
[
φ∗hφ

∗>
h |Fh−1

]
=

1

2
Ω∗,

lim
i→∞

(αmin
i )−1

i∑
i′=K∗

i∏
j′=i′+1

(
1− αmin

j′
)

(1− βj′)αmin
i′ βi′ = 1,

lim
k→∞

(αmin
k )−1

k∑
i=K∗

k∏
j=i+1

(
1− αmin

j

)2
(αmin

i )2 = Θ :=

{
1/2, if b1 < 1,

1/
(

2− 1
ι1

)
, if b1 = 1,

lim
i→∞

(αmin
k )−1

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )2(αmin

i )2βi = 0,

(C.19)

where we require that ι1 > 1
2 if b1 = 1. Therefore,

lim
k→∞

(αmin
k )−1

k∑
h=K∗

E
[
a2
h,kφ

∗
hφ
∗>
h |Fh−1

]
= ΘΩ∗.

We then verify the Lindeberg condition. It is equivalent to showing that

lim
k→∞

1

αmin
k

k∑
h=K∗

a2
h,kE

[
‖φ∗h‖

2
2 · 1‖ah,kφ∗h‖2≥ε(αmin

k )1/2 |Fh−1

]

≤ lim
k→∞

1

ε(αmin
k )3/2

k∑
h=K∗

a3
h,kE

[
‖φ∗h‖

3
2 |Fh−1

]
≤ lim
k→∞

Υφ

ε(αmin
k )3/2

k∑
h=K∗

a3
h,k = 0.

(C.20)
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Suppose that X1,X2, · · · ,Xk, · · · are i.i.d. 1-dimensional random variables with zero mean

and unit 3-moment, i.e., E
[
X3
i

]
= 1 for all i ∈N, then

∑k
h=K∗ a

3
h,k = E

[(∑k
h=K∗ ah,kXh

)3
]

.

The equivalent form
k∑

h=K∗

ah,kXh =

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i

i∑
h=K∗

(
i∏

h′=h+1

(1− βh′)

)
βhXh

further shows
k∑

h=K∗

a3
h,k = E

( k∑
h=K∗

ah,kXh

)3


=E

 k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i

i∑
h=K∗

(
i∏

h′=h+1

(1− βh′)

)
βhXh

3
≤6

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i ·
i∑

i′=K∗

k∏
j′=i′+1

(1− αmin
j′ )αmin

i′ ·
i′∑

i′′=K∗

k∏
j′′=i′′+1

(1− αmin
j′′ )αmin

i′′

·
i′′∑

h=K∗

(
i∏

h′=h+1

(1− βh′)

)(
i′∏

h′=h+1

(1− βh′)

)(
i′′∏

h′=h+1

(1− βh′)

)
β3
hE
[
X3
h

]

=6

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )3αmin

i ·
i∑

i′=K∗

i∏
j′=i′+1

(1− αmin
j′ )2(1− βj′)αmin

i′ ·
i′∑

i′′=K∗

i′∏
j′′=i′′+1

(1− αmin
j′′ )(1− βj′′)2αmin

i′′

·
i′′∑

h=K∗

(
i′′∏

h′=h+1

(1− βh′)

)3

β3
h.

Similarly, note that

i′′∑
h=K∗

(
i′′∏

h′=h+1

(1− βh′)

)3

β3
h =

1

3
=O

(
β2
i′′
)

i′∑
i′′=K∗

i′∏
j′′=i′′+1

(1− αmin
j′′ )(1− βj′′)2αmin

i′′ β
2
i′′ =O

(
αmin
i′ βi′

)
,

i∑
i′=K∗

i∏
j′=i′+1

(1− αmin
j′ )2(1− βj′)(αmin

i′ )2βi′ =O
(
(αmin

i )2
)
,

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )3(αmin

i )3 =O
(
(αmin

k )2
)
,

(C.21)

where we require that ι1 > b2 if b1 = 1. The above results imply that
∑k

h=K∗ a
3
h,k =

O
(
(αmin

k )2
)
, thus the Lindeberg condition is satisfied. By the central limit theorem for mar-

tingale difference array (also called Lévy’s theorem), we deduce that
1√
αmin
k

Q∗∗1,k
d−→N (0,ΘΩ∗) .
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Denote

E∗∗1,k =Q∗1,k −Q∗∗1,k :=

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i (−H∗)−1W2,i,

according to Lemma, we have

E
[∥∥E∗∗1,k

∥∥
2

]
≤ΥH

k∑
i=K∗

k∏
j=i+1

(1− αmin
j )αmin

i

√
E
[
‖W2,i‖22

]
= o

(√
αmin
k

)
,

where we require that ι1 > b2 if b1 = 1. By Slutsky’s theorem,

1√
αmin
k

Q∗1,k
d−→N (0,ΘΩ∗) .

Proof for Theorem 4: it is a direct result from Lemmas 28, 33 and 34.

C.4. Proof for Theorem 5. The second relation is implied by the first one because the
proof in Lemma 31 and the almost sure convergence of primal-dual iterates jointly show that∥∥∥H−1

k − (H∗)−1
∥∥∥

2
→ 0, almost surely. We are left to show the first relation. Note that

‖Σk −Σ∗‖2 =

∥∥∥∥∥ 1

k+ 1

k∑
i=0

gig
>
i −E

[
∇f(x∗; ζ)∇f(x∗; ζ)>

]∥∥∥∥∥
2

+

∥∥∥∥∥∥
(

1

k+ 1

k∑
i=0

gi

)(
1

k+ 1

k∑
i=0

gi

)>
−∇f(x∗)∇f(x∗)>

∥∥∥∥∥∥
2

.

∥∥∥∥∥ 1

k+ 1

k∑
i=0

gig
>
i −E

[
∇f(x∗; ζ)∇f(x∗; ζ)>

]∥∥∥∥∥
2

=

∥∥∥∥∥ 1

k+ 1

k∑
i=0

gig
>
i −E

[
∇f(xi; ζ)∇f(xi; ζ)>|Fi−1

]∥∥∥∥∥
2

+

∥∥∥∥∥ 1

k+ 1

k∑
i=0

E
[
∇f(xi; ζ)∇f(xi; ζ)>|Fi−1 −∇f(x∗; ζ)∇f(x∗; ζ)>

]∥∥∥∥∥
2

The strong law of large number shows that∥∥∥∥∥ 1

k+ 1

k∑
i=0

gig
>
i −E

[
∇f(xi; ζ)∇f(xi; ζ)>|Fi−1

]∥∥∥∥∥
2

= o

√(logk)1+ν

k

 ,

for any ν > 0, almost surely. The almost sure convergence of iterates (i.e., xk→ x∗) implies
that ∥∥∥∥∥ 1

k+ 1

k∑
i=0

E
[
∇f(xi; ζ)∇f(xi; ζ)> −∇f(x∗; ζ)∇f(x∗; ζ)>|Fi−1

]∥∥∥∥∥
2

→ 0,
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almost surely. Similarly, for the second term∥∥∥∥∥ 1

k+ 1

k∑
i=0

gi −∇f(x∗)

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

k+ 1

k∑
i=0

(gi −∇f(xk))

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

k+ 1

k∑
i=0

(∇f(xk)−∇f(x∗))

∥∥∥∥∥
2

,

the strong law of large number also shows∥∥∥∥∥ 1

k+ 1

k∑
i=0

(gi −∇f(xk))

∥∥∥∥∥
2

= o

√(logk)1+ν

k

 ,

for any ν > 0 almost surely, and∥∥∥∥∥ 1

k+ 1

k∑
i=0

(∇f(xk)−∇f(x∗))

∥∥∥∥∥
2

→ 0,

almost surely. Therefore, we complete the proof.


	Introduction
	Motivating examples
	Constrained regression
	Physics-informed machine learning
	Adversarial training
	Constrained neural networks

	Our contributions
	Related works
	Structure of the paper
	Notations

	Constraints Relaxation and Deterministic SQP Algorithm
	The Stochastic SQP Algorithm
	Asymptotic Normality and Convergence Rate
	Experiments
	CUTEst benchmark problems
	Constrained regression problems
	Portfolio optimization problems
	Poisson regression: Chicago air pollution and death rate data

	Conclusion
	References
	Constraints Relaxation and Deterministic Algorithm
	Proof for Proposition 1
	EGMFCQ and Boundedness of Lagrangian Multipliers
	Proof for Theorem 1
	Proof for Lemma 2

	Proof for Theorem 2 and 3
	Some Technical Lemmas for Theorem 2
	Proof for Theorem 2
	Proof for Theorem 3

	Proof for Theorem 4
	Proof for Lemma 3
	Proof for Conclusion 1
	Proof for Conclusion 2
	Proof for Condition 3
	Proof for Conclusion 4

	Proof for Lemma 4
	Proof for Theorem 4
	Proof for Theorem 5


