Abstract
Differential graphical models are designed to represent the difference between the conditional dependence structures of two groups, and thus are of particular interest for scientific investigations. Motivated by modern applications, this manuscript considers an extended setting where each group is generated by a latent variable Gaussian graphical model. Due to the existence of latent factors, the differential network is decomposed into sparse and low-rank components, both of which are symmetric indefinite matrices. We estimate these two components simultaneously using a two-stage procedure: (i) an initialization stage, which computes a simple, consistent estimator, and (ii) a convergence stage, implemented using a projected alternating gradient descent algorithm applied to a nonconvex objective, initialized using the output of the first stage. We prove that given the initialization, the estimator converges linearly with a nontrivial, minimax optimal statistical error. Experiments on synthetic and real data illustrate that the proposed nonconvex procedure outperforms existing methods.
Assistant Professor in ISyE
Sen Na is an Assistant Professor in the School of Industrial and Systems Engineering at Georgia Tech. Prior to joining ISyE, he was a postdoctoral researcher in the statistics department and ICSI at UC Berkeley. His research interests broadly lie in the mathematical foundations of data science, with topics including high-dimensional statistics, graphical models, semiparametric models, optimal control, and large-scale and stochastic nonlinear optimization. He is also interested in applying machine learning methods to biology, neuroscience, and engineering.
Associate Professor of Econometrics and Statistics
Mladen Kolar is an Associate Professor of Econometrics and Statistics at the University of Chicago Booth School of Business. His research is focused on high-dimensional statistical methods, graphical models, varying-coefficient models and data mining, driven by the need to uncover interesting and scientifically meaningful structures from observational data.
Assistant Professor of Computer Science
Sanmi Koyejo is an Assistant Professor in the Department of Computer Science at Stanford University. Koyejo’s research interests are in developing the principles and practice of trustworthy machine learning. Additionally, Koyejo focuses on applications to neuroscience and healthcare.